Journal of Mammary Gland Biology and Neoplasia

, Volume 8, Issue 4, pp 435–447

Wnt-Cadherin Connections in Normal and Neoplastic Mammary Epithelium

  • Valerie Meniel
  • Alan R. Clarke


Since the early recognition that the murine Wnt locus is frequently activated by insertion of the mouse mammary tumour virus, the Wnt pathway has become increasingly associated with both normal and abnormal mammary gland development. This link is further underlined by an emerging role for Wnt deregulation in human mammary neoplasia. The control of transcription through the Wnt signaling pathway is clearly a prime element of this role; however, components of the Wnt pathway possess many functions in addition to their signaling activity, interacting with multiple factors implicated in cellular control processes. Prominent amongst these are the cadherins, which have characterized roles in mediating cell–cell adhesion, and which have been independently implicated in mammary neoplasia. The close interplay between these 2 systems will be discussed in this review with reference both to the normal development of the mammary gland and to the onset of neoplasia in this tissue.

E-cadherin β-catenin transcriptional repression methylation phosphorylation protein interactions mammary tumor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Howard and B. A. Gusterson (2000). Human breast development. J. Mammary Gland Biol. Neoplasia 5: 119–137.Google Scholar
  2. 2.
    J. M. Veltmaat, A. A. Mailleux, J. P. Thiery, and S. Bellusci (2003). Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71: 1–17.Google Scholar
  3. 3.
    L. Hennighausen, and G. W. Robinson (1998). Think globally, act locally: The making of a mouse mammary gland. Genes Dev. 12: 449–455.Google Scholar
  4. 4.
    R. D. Cardiff and S. R. Wellings (1999). The comparative pathology of human and mouse mammary glands. J. Mammary Gland Biol. Neoplasia 4: 105–122.Google Scholar
  5. 5.
    M. J. Wheelock, A. P. Soler, and K. A. Knudsen (2001). Cadherin junctions in mammary tumors. J. Mammary Gland Biol. Neoplasia 6: 275–285.Google Scholar
  6. 6.
    J. M. Daniel and A. B. Reynolds (1997). Tyrosine phosphorylation and cadherin/catenin function. Bioessays 10: 883–891.Google Scholar
  7. 7.
    D. Nanba, Y. Nakanishi, and Y. Hieda (2001). Changes in adhesive properties of epithelial cells during early morphogenesis of the mammary gland. Dev. Growth Differ. 5: 535–544.Google Scholar
  8. 8.
    C. W. Daniel, P. Strickland, and Y. Friedmann (1995). Expression and functional role of E-and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev. Biol. 169: 511–519.Google Scholar
  9. 9.
    G. L. Radice, M. C. Ferreira-Cornwell, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, and R. O. Hynes (1997). Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 139: 1025–1032.Google Scholar
  10. 10.
    V. Delmas, P. Pla, H. Feracci, J. P. Thiery, R. Kemler, and L. Larue (1999). Expression of the cytoplasmic domain of E-cadherin induces precocious mammary epithelial alveolar formation and affects cell polarity and cell-matrix integrity. Dev. Biol. 216: 491–506.Google Scholar
  11. 11.
    O. Boussadia, S. Kutsch, A. Hierholzer, V. Delmas, and R. Kemler (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. J. Mech. Dev. 115: 53–62.Google Scholar
  12. 12.
    G. Berx, F. Nollet, and F. van Roy (1998). Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes. Commun. 6: 171–184.Google Scholar
  13. 13.
    G. L. Bratthauer, F. Moinfar, M. D. Stamtakos, T. Mezzetti, K. M. Shekitka, Y. G. Man, and F. A. Tavassoli (2002). Combined E-Cadherin and high molecular weight cytokeratin immunoprofile differentiates lobular, ductal and hybrid mammary intraepithelial neoplasias. Hum. Pathol. 33: 620–627.Google Scholar
  14. 14.
    S. Hirohashi (1998). Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am. J. Pathol. 153: 333–339.Google Scholar
  15. 15.
    J. P. Thiery (2002). Epithelial-mesnchymal transitions in tumour progression. Nat. Rev. Cancer 2: 442–454.Google Scholar
  16. 16.
    A. S. Wong and B. M. Gumbiner (2003). Adhesion-Independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161: 1191–1203.Google Scholar
  17. 17.
    N. Fujita, D. L. Jaye, M. Kajita, and C. Geigerman (2003). MoreNuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113: 2007–2219.Google Scholar
  18. 18.
    M. J. Blanco, G. Moreno-Bueno, D. Sarrio, A. Locascio, A. Cano, J. Palacios, and M. A. Nieto (2002). Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21: 3241–3246.Google Scholar
  19. 19.
    K. M. Hajra and E. R. Fearon (2002). Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34: 255–268.Google Scholar
  20. 20.
    K. Yoshiura, Y. Kanai, A. Ochiai, Y. Shimoyama, T. Sugimura, and S. Hirohashi (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. U.S.A. 92: 7416–7419.Google Scholar
  21. 21.
    S. Koizume, K. Tachibana, T. Sekiya, S. Hirohashi, and M. Shiraishi (2002). Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res. 30: 4770–4780.Google Scholar
  22. 22.
    L. M. Billard, F. Magdinier, G. M. Lenoir, L. Frappart, and R. Dante (2002). MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland. Oncogene 21: 2704–2712.Google Scholar
  23. 23.
    A. Herrera-Gayol and S. Jothy (1999). Adhesion proteins in the biology of breast cancer: Contribution of CD44. Exp. Mol. Pathol. 66: 149–156.Google Scholar
  24. 24.
    Y. Xu and Q. Yu (2003). E-cadherin negatively regulates CD44-hyaluron interaction and CD44-mediated tumor invasion and branching morphogenesis. J. Biol. Chem. 278: 8661–8668.Google Scholar
  25. 25.
    R. H. Giles, J. H. van Es, and H. Clevers (2003). Caught up in a storm: Wnt signaling in cancer. Biochim. Biophys. Acta. 1653: 1–24.Google Scholar
  26. 26.
    X. He (2003). A wnt-wnt situation. Dev. Cell 4: 791–797.Google Scholar
  27. 27.
    M. Bienz and H. Clevers (2003). Armadillo/beta-catenin signals in the nucleus-proof beyond a reasonable doubt? Nat. Cell Biol. 5(3): 179–182.Google Scholar
  28. 28.
    F. J. Staal, M. Noort Mv, G. J. Strous, and H. C. Clevers (2002). Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep. 3: 63–68.Google Scholar
  29. 29.
    D. H. Song, I. Dominguez, J. Mizuno, M. Kaut, S. C. Mohr, and D. C. Seldin (2003). CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling. J. Biol. Chem. 278: 24018–24025.Google Scholar
  30. 30.
    D. Wolf, M. Rodova, E. A. Miska, J. P. Calvet, and T. Kouzarides (2002). Acetylation of beta-catenin by CREB-binding protein (CBP). J. Biol. Chem. 277: 25562–25567.Google Scholar
  31. 31.
    K. I. Takemaru and R. T. Moon (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. Cell Biol. 149: 249–254.Google Scholar
  32. 32.
    N. Barker, A. Hurlstone, H. Musisi, A. Miles, M. Bienz, and H. Clevers (2001). The chromatin remodeling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J. 20: 4935–4943.Google Scholar
  33. 33.
    B. Thompson, F. Townsley, R. Rosin-Arbesfeld, H. Musisi, and M. Bienz (2002). A new nuclear component of the Wnt signaling pathway. Nat. Cell Biol. 4: 367–373.Google Scholar
  34. 34.
    T. Y. Belenkaya, C. Han, H. J. Standley, X. Lin, D. W. Houston, J. Heasman, and X. Lin (2002). Pygopus encodes a nuclear protein essential for wingless/Wnt signaling. Development 129: 4089–4101.Google Scholar
  35. 35.
    T. Kramps, O. Peter, E. Brunner, D. Nellen, B. Froesch, S. Chatterjee, M. Murone, S. Zullig, and K. Basler (2002). Wnt/ wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109: 47–60.Google Scholar
  36. 36.
    A. M. Brown (2001). Wnt signaling in breast cancer: Have we come full circle? Breast. Cancer Res. 3: 351–355.Google Scholar
  37. 37.
    L. R. Howe, O. Watanabe, J. Leonard, and A. M. Brown (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 63: 1906–1913.Google Scholar
  38. 38.
    E. J. Gunther, S. E. Moody, G. K. Belka, K. T. Hann, N. Innocent, K. D. Dugan, R. D. Cardiff, and L. A. Chodosh (2003). Impact of p53 on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 17: 488–501.Google Scholar
  39. 39.
    C. M. Alexander, F. Reichsman, M. T. Hinkes, J. Lincecum, K. A. Becker, S. Cumberledge, and M. Bernfield (2000). Syndecan-1 is required for Wnt-1 induced mammary tumorigenesis in mice. Nat. Genet. 25: 329–332.Google Scholar
  40. 40.
    W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155: 1055–1064.Google Scholar
  41. 41.
    C. Genderen, R. M. Okamura, I. Farinas, R. G. Quo, T. G. Parslow, L. Bruhn, and R. Grosschedl (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8: 2691–2703.Google Scholar
  42. 42.
    J. Roose, G. Huls, M. van Beest, P. Moerer, K. van der Horn, R. Goldschmeding, T. Logtenberg, and H. Clevers (1999). Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 285: 1923–1926.Google Scholar
  43. 43.
    R. C. Gallagher, T. Hay, V. Meniel, C. Naughton, T. J. Anderson, H. Shibata, M. Ito, H. Clevers, T. Noda, O. J. Sansom, J. O. Mason, and A. R. Clarke (2002). Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21: 6446–6457.Google Scholar
  44. 44.
    M. Kashiwaba, G. Tamura, and M. Ishida (1994). Aberrations of the APC gene in primary breast carcinoma. J. Cancer Res. Clin. Oncol. 120: 727–731.Google Scholar
  45. 45.
    A. Thompson, R. Morris, M. Wallace, A. Wyllie, C. Steel, and D. Carter (1993). Allele loss from 5q21 (APC/MCC) and 18q21 (DCC) and DCC mRNA expression in breast cancer. Br. J. Cancer 68: 64–68.Google Scholar
  46. 46.
    K. Ho, W. Kalle, T. H. S. Lo, W. Lam, and C. Tang (1999). Reduced expression of APC and DCC gene protein in breast cancer. Histopathology 35: 249–256.Google Scholar
  47. 47.
    P. Schlosshauer, S. Brown, K. Eisenger, Q. Yan, E. Guglielminetti, R. Parsons, L. Ellenson, and J. Kitajewski (2000). APC truncation and increased beta-catenin levels in a human breast cancer cell line. Carcinogenesis 21: 1453–1456.Google Scholar
  48. 48.
    T. Woodage, S. King, S. Wacholder, P. Hartge, J. Struewing, M. McAdams, S. J. Laken, M. A. Tucker, and L. C. Brody (1998). The APCI1307K allele and cancer risk in a community-based study of Ashkenazi Jews. Nat. Genet. 20: 62–65.Google Scholar
  49. 49.
    K. Furuuchi, M. Tada, H. Yamada, A. Kataoka, N. Furuuchi, J. Hamada, M. Takahashi, S. Todo, T. Moriuchi (2000). Somatic mutations of the APC gene in primary breast cancers. Am. J. Pathol. 156: 1997–2005.Google Scholar
  50. 50.
    Z. Jin, G. Tamura, T. Tsuchiya, K. Sakata, M. Kashiwaba, M. Osakabe, and T. Motoyama (2001). Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br. J. Cancer 85: 69–73.Google Scholar
  51. 51.
    T. Nagahata, T. Shimada, A. Harada, H. Nagai, M. Onda, S. Yokoyama, T. Shiba, E. Jin, O. Kawanami, and M. Emi (2003). Amplification, up regulation and overexpression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci. 94: 515–518.Google Scholar
  52. 52.
    M. K. El-Tanani, R. Barraclough, M. C. Wilkinson, and P. S. Rudland (2001). Regulatory region of metastasis-inducing DNA is the binding site for T cell factor-4. Oncogene 20: 1793–1797.Google Scholar
  53. 53.
    J. S. Michaelson and P. Leder (2001). Beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20: 5093–5099.Google Scholar
  54. 54.
    A. Imbert, R. Eelkema, S. Jordan, H. Feiner, and P. Cowin (2001). Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153: 555–568.Google Scholar
  55. 55.
    A. Ryo, M. Nakamura, G. Wulf, Y. C. Liou, and K. P. Lu (2001). Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3: 793–801.Google Scholar
  56. 56.
    Q. Yu, Y. Geng, and P. Sicinski (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1001–1002.Google Scholar
  57. 57.
    E. Sadot, B. Geiger, M. Oren, and A. Ben-Ze'ev (2001). Down-regulation of beta-catenin by activated p53. Mol. Cell Biol. 21: 6768–6781.Google Scholar
  58. 58.
    T. Cagatay and M. Ozturk (2002). P53 mutation as a source of aberrant beta-catenin accumulation in cancer cells. Oncogene 21: 7971–7980.Google Scholar
  59. 59.
    M. Ueda, R. M. Gemmill, J. West, R. Winn, M. Sugita, N. Tanaka, M. Ueki, H. A. Drabkin (2001). Mutations of the beta-and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br. J. Cancer 85: 64–68.Google Scholar
  60. 60.
    H. Huang, H. Fujii, A. Sankila, B. M. Mahler-Araujo, M. Matsuda, G. Cathomas, and H. Ohgaki (1999). Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am. J. Pathol. 155: 1795–1801.Google Scholar
  61. 61.
    S. Satoh, Y. Daigo, Y. Furukawa, T. Kato, N. Miwa, T. Nishiwaki, T. Kawasoe, H. Ishiguro, M. Fujita, T. Tokino, Y. Sasaki, S. Imaoka, M. Murata, T. Shimano, Y. Yamaoka, and Y. Nakamura (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24: 245–250.Google Scholar
  62. 62.
    S. Hirohashi and Y. Kanai (2003). Cell adhesion system and human cancer morphogenesis. Cancer Sci. 94: 575–581.Google Scholar
  63. 63.
    G. Berx, and F. Van Roy (2001). The E-cadherin/catenin complex: An important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast. Cancer Res. 3: 289–293.Google Scholar
  64. 64.
    C. J. Gottardi, E. Wong, and B. M. Gumbiner (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. Cell Biol. 153: 1049–1060.Google Scholar
  65. 65.
    J. Castano, I. Raurell, J. A. Piedra, S. Miravet, M. Dunach, and A. Garcia de Herreros (2002). Beta-catenin N-and C-terminal tails modulate the coordinated binding of adherens junction proteins to beta-catenin. J. Biol. Chem. 277: 31541–31550.Google Scholar
  66. 66.
    A. H. Huber and W. I. Weis (2001). The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105(3): 391–402.Google Scholar
  67. 67.
    J. Klingelhofer, R. B. Troyanovsky, O. Y. Laur, and S. Troyanovsky (2003). Exchange of catenins in cadherin-catenin complex. Oncogene 22: 1181–1188.Google Scholar
  68. 68.
    A. M. Carothers, K. A. Melstrom, Jr., J. D. Mueller, M. J. Weyant, and M. M. Bertagnolli (2001). Progressive changes in adherens junction structure during intestinal adenoma formation in Apc mutant mice. J. Biol. Chem. 276: 39094–39102.Google Scholar
  69. 69.
    M. Bienz (1999). APC: The plot thickens. Curr. Opin. Genet. Dev. 9: 595–603.Google Scholar
  70. 70.
    C. J. Vallorosi, K. C. Day, X. Zhao, M. G. Rashid, M. A. Rubin, K. R. Johnson, M. J. Wheelock, and M. L. Day (2000). Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. Biol. Chem. 275: 3328–3334.Google Scholar
  71. 71.
    J. Rios-Doria, K. C. Day, R. Kuefer, M. G. Rashid, A. M. Chinnaiyan, M. A. Rubin, and M. L. Day (2003). The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J. Biol. Chem. 278: 1372–1379.Google Scholar
  72. 72.
    M. Serres, O. Filhol, H. Lickert, C. Grangeasse, E. M. Chambaz, J. Stappert, C. Vincent, and D. Schmitt (2000). The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp. Cell Res. 257: 255–264.Google Scholar
  73. 73.
    H. Lickert, A. Bauer, R. Kemler, and J. Stappert (2000). Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem. 275: 5090–5095.Google Scholar
  74. 74.
    S. Bek and R. Kemler (2002). Protein kinase CKII regulates the interaction of beta-catenin with alpha-catenin and its protein stability. J. Cell Sci. 115: 4743–4753.Google Scholar
  75. 75.
    M. S. Kinch, G. J. Clark, C. J. Der, and K. Burridge (1995). Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia. J. Cell Biol. 130: 461–471.Google Scholar
  76. 76.
    T. Muller, A. Choidas, E. Reichmann, and A. Ullrich (1999). Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem. 274: 10173–10183.Google Scholar
  77. 77.
    Y. Kanai, A. Ochiai, T. Shibata, T. Oyama, S. Ushijima, S. Akimoto, and S. Hirohashi (1995). c-erbB-2 gene product directly associates with beta-catenin and plakoglobin. Biochem. Biophys. Res. Commun. 208: 1067–1072.Google Scholar
  78. 78.
    T. Shibata, A. Ochiai, Y. Kanai, S. Akimoto, M. Gotoh, N. Yasui, R. Machinami, and S. Hirohashi (1996). Dominant negative inhibition of the association between beta-catenin and c-erbB-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 13: 883–889.Google Scholar
  79. 79.
    K. L. Carraway, V. P. Ramsauer, B. Haq, and C. A. Carothers (2003). Cell signaling through membrane mucins. Bioessays 25: 66–71.Google Scholar
  80. 80.
    S. J. Gendler (2001). MUC1, The renaissance molecule. J. Mammary Gland Biol. Neoplasia 6: 339–353.Google Scholar
  81. 81.
    J. A. Schroeder, M. C. Adriance, M. C. Thompson, T. D. Camenisch, and S. J. Gendler (2003). MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 22: 1324–1332.Google Scholar
  82. 82.
    M. L. Taddei, P. Chiarugi, P. Cirri, F. Buricchi, T. Fiaschi, E. Giannoni, D. Talini, G. Cozzi, L. Formigli, G. Raugei, and G. Ramponi (2002). Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase. Cancer Res. 62: 6489–6499.Google Scholar
  83. 83.
    C. Jamora, R. DasGupta, P. Kocieniewski, and E. Fuchs (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422: 317–322Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Valerie Meniel
    • 1
  • Alan R. Clarke
    • 1
  1. 1.Cardiff School of BiosciencesCardiff UniversityCardiff, WalesUnited Kingdom

Personalised recommendations