Journal of Mammary Gland Biology and Neoplasia

, Volume 8, Issue 4, pp 383–394

Integrins in Mammary Gland Development and Differentiation of Mammary Epithelium

  • Ilaria Taddei
  • Marisa M. Faraldo
  • Jérôme Teulière
  • Marie-Ange Deugnier
  • Jean Paul Thiery
  • Marina A. Glukhova


Integrins are major extracellular matrix (ECM) receptors that can also serve for some cell–cell interactions. They have been identified as important regulators of mammary epithelial cell growth and differentiation. Their ability to promote cell anchorage, proliferation, survival, migration, and the induction of active ECM-degrading enzymes suggests that they play an essential role in normal mammary morphogenesis, but, on the other hand, reveals their potential to promote tumor progression.

integrins mammary epithelium differentiation morphogenesis tumor progression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. O. Hynes (2002). Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673–687.Google Scholar
  2. 2.
    F. G. Giancotti and E. Ruoslahti (1999). Integrin signaling. Science 285: 1028–1032.Google Scholar
  3. 3.
    F. G. Giancotti and G. Tarone (2003). Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol. 19: 173–206.Google Scholar
  4. 4.
    C. K. Miranti and J. S. Brugge (2002). Sensing the environment: A historical perspective on integrin signal transduction. Nat. Cell Biol. 4: E83-E90.Google Scholar
  5. 5.
    G. M. Edwards, F. H. Wilford, X. Liu, L. Hennighausen, J. Djiane, and C. H. Streuli (1998). Regulation of mammary differentiation by extracellular matrix involves protein-tyrosine phosphatases. J. Biol. Chem. 273: 9495–9500.Google Scholar
  6. 6.
    C. H. Streuli, G. M. Edwards, M. Delcommenne, C. B. Whitelaw, T. G. Burdon, C. Schindler, et al. (1995). Stat5 as a target for regulation by extracellular matrix. J. Biol. Chem. 270: 21639–21644.Google Scholar
  7. 7.
    S. Z. Haslam and T. L. Woodward (2001). Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Res. 3: 365–372.Google Scholar
  8. 8.
    L. Shaw (1999). Integrin function in breast carcinoma progression. J. Mammary Gland Bio. Neoplasia 4: 367–376.Google Scholar
  9. 9.
    T. L. Woodward, A. S. Mienaltowski, R. R. Modi, J. M. Bennet, and S. Z. Haslam (2001). Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology 142: 3214–3222.Google Scholar
  10. 10.
    M. Delcommenne and C. H. Streuli (1995). Control of integrin expression by extracellular matrix. J. Biol. Chem. 270: 26794–26801.Google Scholar
  11. 11.
    R. Y. Huang and M. M. Ip (2001). Differential expression of integrin mRNAs and proteins during normal rat mammary gland development and in carcinogenesis. Cell Tissue Res. 303: 69–80.Google Scholar
  12. 12.
    P. J. Keely, J. E. Wu, and S. A. Santoro (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59: 1–13.Google Scholar
  13. 13.
    J. M. Prince, T. C. Klinowska, E. Marshman, E. T. Lowe, U. Mayer, J. Miner, et al. (2002). Cell-matrix interactions during development and apoptosis of the mouse mammary gland in vivo. Dev. Dyn. 223: 497–516.Google Scholar
  14. 14.
    T. Iype, K. Jayasree, and P. R. Sudhakaran (2001). Modulation of alpha2beta1 integrin changes during mammary gland development by beta-oestradiol. Biochim. Biophys. Acta 1499: 232–241.Google Scholar
  15. 15.
    C. Forster, S. Makela, A. Warri, S. Kietz, D. Becker, K. Hultenby, et al. (2002). Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc. Natl. Acad. Sci. U.S.A. 99: 15578–15583.Google Scholar
  16. 16.
    V. Novaro, C. D. Roskelley, and M. J. Bissell (2003). Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells. J. Cell Sci. 116: 2975–2986.Google Scholar
  17. 17.
    M. A. Deugnier, E. P. Moiseyeva, J. P. Thiery, and M. A. Glukhova (1995). Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype. Dev. Dyn. 204: 107–117.Google Scholar
  18. 18.
    R. Suzuki, A. J. Atherton, M. J. O'Hare, A. Entwistle, S. R. Lakhani, and C. Clarke (2000). Proliferation and differentiation in the human breast during pregnancy. Differentiation 66: 106–115.Google Scholar
  19. 19.
    R. N. Suzuki, A. Entwistle, A. J. Atherton, C. Clarke, S. R. Lakhani, and M. J. O'Hare (2002). The expression patterns of integrin subunits on human breast tissues obtained during pregnancy. Cell Biol. Int. 26: 593–598.Google Scholar
  20. 20.
    M. A. Schwartz and R. K. Assoian (2001). Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114: 2553–2560.Google Scholar
  21. 21.
    N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Supression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267: 891–893.Google Scholar
  22. 22.
    A. P. Gilmore, A. D. Metcalfe, L. H. Romer, and C. H. Streuli (2000). Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J. Cell Biol. 149: 431–446.Google Scholar
  23. 23.
    P. Wang, A. J. Valentijn, A. P. Gilmore, and C. H. Streuli (2003). Early events in the anoikis program occur in the absence of caspase activation. J. Biol. Chem. 278: 19917–19925.Google Scholar
  24. 24.
    M. J. Reginato, K. R. Mills, J. K. Paulus, D. K. Linch, D. C. Sgroi, J. Debnath, et al. (2003). Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol. 6: 6.Google Scholar
  25. 25.
    S. R. Datta, A. Brunet, and M. E. Greenberg (1999). Cellular survival: A play in three Akts. Genes Dev. 13: 2905–2927.Google Scholar
  26. 26.
    N. Farrelly, Y. J. Lee, J. Oliver, C. Dive, and C. H. Streuli (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell. Biol. 144: 1337–1348.Google Scholar
  27. 27.
    Y. J. Lee and C. H. Streuli (1999). Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands. J. Biol. Chem. 274: 22401–22408.Google Scholar
  28. 28.
    V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137: 231–245.Google Scholar
  29. 29.
    V. M. Weaver, S. Lelievre, J. N. Lakins, C. A. Larabell, P. Briand, C. Damsky, et al. (2002). Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2: 205–216.Google Scholar
  30. 30.
    F. Wang, V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, et al. (1998). Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology. Proc. Natl. Acad. Sci. U.S.A. 95: 14821–14826.Google Scholar
  31. 31.
    F. Wang, R. K. Hansen, D. Radisky, T. Yoneda, M. H. Barcellos-Hoff, O. W. Petersen, et al. (2002). Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl. Cancer Inst. 94: 1494–1503.Google Scholar
  32. 32.
    M. M. Faraldo, M. A. Deugnier, M. Lukashev, J. P. Thiery, and M. A. Glukhova (1998). Perturbation of beta1-integrin function alters the development of murine mammary gland. Embo. J. 17: 2139–2147.Google Scholar
  33. 33.
    M. M. Faraldo, M. A. Deugnier, J. P. Thiery, and M. A. Glukhova (2001). Growth defects induced by perturbation of {beta}1-integrin function in the mammary gland epithelium result from a lack of MAPK activation via the Shc and Akt pathways. EMBO Rep. 2: 431–437.Google Scholar
  34. 34.
    V. L. Seewaldt, K. Mrozek, R. Sigle, E. C. Dietze, K. Heine, D. M. Hockenbery, et al. (2001). Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix-induced apoptosis. J. Cell Biol. 155: 471–486.Google Scholar
  35. 35.
    R. E. Bachelder, A. Marchetti, R. Falcioni, S. Soddu, and A. M. Mercurio (1999). Activation of p53 function in carcinoma cells by the alpha6beta4 integrin. J. Biol. Chem. 274: 20733–20737.Google Scholar
  36. 36.
    L. Hennighausen and G. W. Robinson (2001). Signaling pathways in mammary gland development. Dev. Cell 1: 467–475.Google Scholar
  37. 37.
    C. H. Streuli, C. Schmidhauser, N. Bailey, P. Yurchenco, A. P. Skubitz, C. Roskelley, et al. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 129: 591–603.Google Scholar
  38. 38.
    J. Muschler, A. Lochter, C. D. Roskelley, P. Yurchenco, M. J. Bissell (1999). Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Mol. Biol. Cell 10: 2817–2828.Google Scholar
  39. 39.
    M. M. Faraldo, M. A. Deugnier, S. Tlouzeau, J. P. Thiery, and M. A. Glukhova (2002). Perturbation of beta1-integrin function in involuting mammary gland results in premature dedifferentiation of secretory epithelial cells. Mol. Biol. Cell 13: 3521–3531.Google Scholar
  40. 40.
    S. Geymayer and W. Doppler (2000). Activation of NF-kappaB p50/p65 is regulated in the developing mammary gland and inhibits STAT5-mediated beta-casein gene expression. Faseb J. 14: 1159–1170.Google Scholar
  41. 41.
    H. Gardner, J. Kreidberg, V. Koteliansky, and R. Jaenisch (1996). Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175: 301–313.Google Scholar
  42. 42.
    J. Chen, T. G. Diacovo, D. G. Grenache, S. A. Santoro, and M. M. Zutter (2002). The alpha(2) integrin subunit-deficient mouse: A multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am. J. Pathol. 161: 337–344.Google Scholar
  43. 43.
    T. C. Klinowska, C. M. Alexander, E. Georges-Labouesse, R. Van der Neut, J. A. Kreidberg, C. J. Jones, et al. (2001). Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev. Biol. 233: 449–467.Google Scholar
  44. 44.
    M. E. El-Sabban, A. J. Sfeir, M. H. Daher, N. Y. Kalaany, R. A. Bassam, and R. S. Talhouk (2003). ECM-induced gap junctional communication enhances mammary epithelial cell differentiation. J. Cell Sci. 116: 3531–3541.Google Scholar
  45. 45.
    M. A. Deugnier, M. M. Faraldo, P. Rousselle, J. P. Thiery, and M. A. Glukhova (1999). Cell-extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. J. Cell Sci. 112: 1035–1044.Google Scholar
  46. 46.
    B. S. Wiseman and Z. Werb (2002). Stromal effects on mammary gland development and breast cancer. Science 296: 1046–1049.Google Scholar
  47. 47.
    F. Berdichevsky, D. Alford, B. D'Souza, and J. Taylor-Papadimitriou (1994). Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107: 3557–3566.Google Scholar
  48. 48.
    S. Stahl, S. Weitzman, and J. C. Jones (1997). The role of laminin-5 and its receptors in mammary epithelial cell branching morphogenesis. J. Cell Sci. 110: 55–63.Google Scholar
  49. 49.
    T. Gudjonsson, L. Ronnov-Jessen, R. Villadsen, F. Rank, M. J. Bissell, and O. W. Petersen (2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 115: 39–50.Google Scholar
  50. 50.
    N. Koshikawa, G. Giannelli, V. Cirulli, K. Miyazaki, and V. Quaranta (2000). Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell Biol. 148: 615–624.Google Scholar
  51. 51.
    M. A. Deugnier, M. M. Faraldo, B. Janji, P. Rousselle, J. P. Thiery, and M. A. Glukhova (2002). EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J. Cell Biol. 159: 453–463.Google Scholar
  52. 52.
    T. C. Klinowska, J. V. Soriano, G. M. Edwards, J. M. Oliver, A. J. Valentijn, and R. Montesano (1999). Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Dev. Biol. 215: 13–32.Google Scholar
  53. 53.
    T. Sakai, M. Larsen, and K. M. Yamada (2003). Fibronectin requirement in branching morphogenesis. Nature 423: 876–881.Google Scholar
  54. 54.
    B. S. Wiseman, M. D. Sternlicht, L. R. Lund, C. M. Alexander, J. Mott, M. J. Bissell, et al. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 162: 1123–1133.Google Scholar
  55. 55.
    V. Gouon-Evans, M. E. Rothenberg, and J. W. Pollard (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development 127: 2269–2282.Google Scholar
  56. 56.
    K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof (1995). High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55: 901–906.Google Scholar
  57. 57.
    U. M. Wewer, L. M. Shaw, R. Albrechtsen, and A. M. Mercurio (1997). The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am. J. Pathol. 151: 1191–1198.Google Scholar
  58. 58.
    A. M. Mercurio, R. E. Bachelder, J. Chung, K. L. O'Connor, I. Rabinovitz, and L. M. Shaw (2001). Integrin laminin receptors and breast carcinoma progression. J. Mammary Gland Biol. Neoplasia 6: 299–309.Google Scholar
  59. 59.
    K. L. O'Connor and A. M. Mercurio (2001). Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells. J. Biol. Chem. 276: 47895–47900.Google Scholar
  60. 60.
    I. Rabinovitz, I. K. Gipson, and A. M. Mercurio (2001). Traction forces mediated by alpha6beta4 integrin: Implications for basement membrane organization and tumor invasion. Mol. Biol. Cell 12: 4030–4043.Google Scholar
  61. 61.
    M. J. Arboleda, J. F. Lyons, F. F. Kabbinavar, M. R. Bray, B. E. Snow, and R. Ayala (2003). Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 63: 196–206.Google Scholar
  62. 62.
    M. Morini, M. Mottolese, N. Ferrari, F. Ghiorzo, S. Buglioni, and R. Mortarini (2000). The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int. J. Cancer 87: 336–342.Google Scholar
  63. 63.
    T. Sugiura and F. Berditchevski (1999). Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J. Cell Biol. 146: 1375–1389.Google Scholar
  64. 64.
    A. Lochter, M. Navre, Z. Werb, and M. J. Bissell (1999). Alpha1 and alpha2 integrins mediate invasive activity of mouse mammary carcinoma cells through regulation of stromelysin-1 expression. Mol. Biol. Cell 10: 271–282.Google Scholar
  65. 65.
    E. I. Deryugina, B. Ratnikov, E. Monosov, T. I. Postnova, R. DiScipio, J. W. Smith, et al. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp. Cell Res. 263: 209–223.Google Scholar
  66. 66.
    E. I. Deryugina, B. I. Ratnikov, T. I. Postnova, D. V. Rozanov, and A. Y. Strongin (2002). Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J. Biol. Chem. 277: 9749–9756.Google Scholar
  67. 67.
    B. I. Ratnikov, D. V. Rozanov, T. I. Postnova, P. G. Baciu, H. Zhang, R. G. DiScipio, et al. (2002). An alternative processing of integrin alpha(v) subunit in tumor cells by membrane type-1 matrix metalloproteinase. J. Biol. Chem. 277: 7377–7385.Google Scholar
  68. 68.
    B. Felding-Habermann, T. E. O'Toole, J. W. Smith, E. Fransvea, Z. M. Ruggeri, M. H. Ginsberg, et al. (2001). Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci. U.S.A. 98: 1853–1858.Google Scholar
  69. 69.
    M. Rolli, E. Fransvea, J. Pilch, A. Saven, and B. Felding-Habermann (2003). Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100: 9482–9487.Google Scholar
  70. 70.
    I. Pecheur, O. Peyruchaud, C. M. Serre, J. Guglielmi, C. Voland, F. Bourre, et al. (2002). Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J. 16: 1266–1368.Google Scholar
  71. 71.
    J. P. Thiery (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2: 442–454.Google Scholar
  72. 72.
    K. Kawano, S. S. Kantak, M. Murai, C. C. Yao, and R. H. Kramer (2001). Integrin alpha3beta1 engagement disrupts intercellular adhesion. Exp. Cell Res. 262: 180–196.Google Scholar
  73. 73.
    G. E. Plopper, S. Z. Domanico, V. Cirulli, W. B. Kiosses, and V. Quaranta (1998). Migration of breast epithelial cells on Laminin-5: Differential role of integrins in normal and transformed cell types. Breast Cancer Res. Treat. 51: 57–69.Google Scholar
  74. 74.
    G. E. Plopper, J. L. Huff, W. L. Rust, M. A. Schwartz, and V. Quaranta (2000). Antibody-induced activation of beta1 integrin receptors stimulates cAMP-dependent migration of breast cells on laminin-5. Mol. Cell Biol. Res. Commun. 4: 129–135.Google Scholar
  75. 75.
    Y. Wei, J. A. Eble, Z. Wang, J. A. Kreidberg, and H. A. Chapman (2001). Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol. Biol. Cell 12: 2975–2986.Google Scholar
  76. 76.
    F. Zhang, C. C. Tom, M. C. Kugler, T. T. Ching, J. A. Kreidberg, Y. Wei, et al. (2003). Distinct ligand binding sites in interne α 3β 1regulate matrix adhesion and cell-cell contact. J. Cell Biol. 163: 177–188.Google Scholar
  77. 77.
    N. A. Bhowmick, R. Zent, M. Ghiassi, M. McDonnell, and H. L. Moses (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J. Biol. Chem. 276: 46707–46713.Google Scholar
  78. 78.
    D. Wang, L. Sun, E. Zborowska, J. K. Willson, J. Gong, J. Verraraghavan, et al. (1999). Control of type II transforming growth factor-beta receptor expression by integrin ligation. J. Biol. Chem. 274: 12840–12847.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Ilaria Taddei
    • 1
  • Marisa M. Faraldo
    • 1
  • Jérôme Teulière
    • 1
  • Marie-Ange Deugnier
    • 1
  • Jean Paul Thiery
    • 1
  • Marina A. Glukhova
    • 1
  1. 1.UMR 144 CNRS-Institut Curie, Section de RechercheParis Cedex 05France

Personalised recommendations