Journal of Mathematical Chemistry

, Volume 36, Issue 4, pp 409–421 | Cite as

Modeling Effective Interactions of Micellar Aggregates of Ionic Surfactants with the Gauss-Core Potential

Article

Abstract

Micellar aggregates of ionic surfactants are known to possess a rich variety of interesting thermodynamic as well as structural properties, which are essentially dominated by simple effective interactions between the aggregates. Because of their technological relevance enormous efforts have been invested to understand and characterize their interactions in solution with the goal of developing substances with novel material’s properties. On a theoretical level several approaches have been proposed to describe their effective interactions adequately, generally based on the DLVO theory. However, these approaches do not take into account aspects of stability of the aggregates and therefore fail in the description of several important characteristics, such as, e.g., the re-entrant behavior of the apparent molal heat capacity appearing with increasing density of the micelles. In this paper we study the effective interactions of these systems by investigating the suitability of the Gauss-core model, to reproduce the relevant thermodynamic properties. To this end, we discuss the Gauss-core model in comparison to the standard DLVO model and demonstrate its aptitude to reproduce the results from calorimetric experiments of the ionic surfactant sodium decanoate in water.

aqueous suspensions of ionic surfactants coarse-grained models computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1 ]
    S.J. Burkitt, R.H. Ottewill, J.B. Hayter and B.T. Ingram,Colloid Polym.Sci.265 (1987)619.Google Scholar
  2. [2 ]
    R.M. Clapperton, R.H. Ottewill, A.R. Rennie and B.T. Ingram,Colloid Polym.Sci.277 (1999) 15.Google Scholar
  3. [3 ]
    D.E. Discher and A. Eisenberg,Science 297 (2002)967.Google Scholar
  4. [4 ]
    S.M. Jones, K.E. Howell, J.R. Henley, H. Cao and M.A. McNiven,Science 279 (1998)573.Google Scholar
  5. [5 ]
    Y.-Y. Won, H.T. Davis and F.S. Bates,Science 283 (1999)960.Google Scholar
  6. [6 ]
    B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber,Science 298 (2002)1759.Google Scholar
  7. [7 ]
    R. De Lisi, G. Perron and J.E. Desnoyers,Can.J.Chem.58 (1980)959.Google Scholar
  8. [8 ]
    L.V. Dearden and E.M. Woolley,J.Phys.Chem.91 (1987)4123.Google Scholar
  9. [9 ]
    E.M. Woolley and T.E. Burch eld,J.Phys.Chem.88 (1984)2155.Google Scholar
  10. [10 ]
    K. Ballerat-Busserolles, C. Bizzo, L. Pezzini, K.Sullivan and E.M. Woolley,J.Chem.Thermo-dyn.30 (1998)971.Google Scholar
  11. [11 ]
    G.M. Musbally, G. Perron and J.E. Desnoyers,J.Colloid Interf.Sci.48 (1974)494.Google Scholar
  12. [12 ]
    P.Linse,J.Chem.Phys.110 (1999)3493.Google Scholar
  13. [13 ]
    V. Vlachy, C.H. Marshall and A.D.J. Haymet,J.Am.Chem.Soc.111 (1989)4160.Google Scholar
  14. [14 ]
    P.Linse,J.Chem.Phys.93 (1990)1376.Google Scholar
  15. [15 ]
    B.H ribar, Y.V. Kalyuzhnyi and V. Vlachy,Mol.Phys.87 (1996)1317.Google Scholar
  16. [16 ]
    B.Hribar and V.Vlachy,J.Phys.Chem.B 101 (1997)3457.Google Scholar
  17. [17 ]
    I.D 'Amico and H. Löwen,Physica A 237 (1997)25.Google Scholar
  18. [18 ]
    E.Allahyarov, I.D 'Amico and H. Löwen,Phys.Rev.Lett.81 (1998)1334.Google Scholar
  19. [19 ]
    B. Hribar, H. Krienke, Y.V. Kalyuzhnyi and V. Vlachy,J.Mol.Liq.73-74 (1997)277.Google Scholar
  20. [20 ]
    V.Lobaskin and P.Linse,J.Chem.Phys.109 (1998)3530.Google Scholar
  21. [21 ]
    V.Lobaskin and P.Linse,J.Chem.Phys.111 (1999)4300.Google Scholar
  22. [22 ]
    V.Lobaskin and P.Linse,J.Mol.Liq.84 (2000)131.Google Scholar
  23. [23 ]
    V.Lobaskin, A.Lyubartsev and P.Linse,Phys.Rev.E 63 (2001)020401.Google Scholar
  24. [24 ]
    M.Dijkstra,Curr.Opin.Colloid Interf.Sci.6 (2001)372.Google Scholar
  25. [25 ]
    B.V. Derjaguin and L.D. Landau,Acta Physicochim.URSS 14 (1941)633.Google Scholar
  26. [26 ]
    E.J. Verwey and J.T.G. Overbeek,Theory of the Stability of Lyophobic Colloids (Elsevier, Am-sterdam,1948).Google Scholar
  27. [27 ]
    R.Podgornik,J.Phys.Chem.95 (1991)5249.Google Scholar
  28. [28 ]
    R.O. Rosenberg and D. Thirumalai,Phys.Rev.A 36 (1987)5690.Google Scholar
  29. [29 ]
    H.Yotsumoto and Y.Roe-Hoan,J.Colloid Interf.Sci.157 (1993)434.Google Scholar
  30. [30 ]
    A.K. Sood,Solid State Phys.45 (1991)1.Google Scholar
  31. [31 ]
    M.Dijkstra and R.van Roij,J.Phys.:Condens.Matter 10 (1998)1219.Google Scholar
  32. [32 ]
    J.O 'M. Bockris and A.K.N. Reddy,Modern Electrochemistry,Vol.1 (Plenum Press, New York, 1970).Google Scholar
  33. [33 ]
    A.A. Louis, P.G. Bolhuis, J.-P. Hansen and E.J. Meijer,Phys.Rev.Lett.85 (2000)2522.Google Scholar
  34. [34 ]
    A.A. Louis, P.G. Bolhuis and J.-P. Hansen,Phys.Rev.E 62 (2000)7961.Google Scholar
  35. [35 ]
    P.G. Bolhuis, A.A. Louis, J.-P. Hansen and E.J. Meijer,J.Chem.Phys.114 (2001)4296.Google Scholar
  36. [36 ]
    F.H. Stillinger and D.K. Stillinger,Physica A 244 (1997)358.Google Scholar
  37. [38 ]
    C.Madelmont and R.Perron,Colloid Polym.Sci.254 (1976)581.Google Scholar
  38. [39 ]
    R.G. Laughlin,The Aqueous Phase Behavior of Surfactants (Academic Press, London,1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Institut für Physikalische und Theoretische ChemieUniversität RegensburgRegensburgGermany.

Personalised recommendations