Advertisement

Journal of Low Temperature Physics

, Volume 137, Issue 3–4, pp 289–317 | Cite as

Physics of Proteins at Low Temperature

  • Vladimir V. Ponkratov
  • Josef Friedrich
  • Jane M. Vanderkooi
  • Alexander L. Burin
  • Yuri A. Berlin
Article

Abstract

We present results of a hole burning study with thermal cycling and waiting time spectral diffusion experiments on a modified cytochrome - c protein in its native as well as in its denatured state. The experiments show features which seem to be characteristic for the protein state of matter and its associated dynamics at low temperature. The properties responsible for the observed patterns are organisation paired with randomness and, in addition, the finite size which gives rise to surface and solvent effects. We discuss some general model approaches which might serve as guide lines for understanding these features.

Keywords

Burning General Model Thermal Cycling Magnetic Material Solvent Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Frauenfelder, F. Parak and R. D. Young, Annu. Rev. Biophys. Biophys. Chem. 17, 451 (1998).Google Scholar
  2. 2.
    H. Frauenfelder and P.G. Wolynes, Physics Today 47, 58 (1994).Google Scholar
  3. 3.
    K.A. Dill and H.S. Chan, Nat. Struct. Biol. 4, 10 (1997).Google Scholar
  4. 4.
    H. Frauenfelder, G.A. Pestsko and D. Tsernoglou, Nature 280, 558 (1979).Google Scholar
  5. 5.
    H. Hartmann, F. Parak, W. Steigemann G.A. Petsko, D.R. Ponzi and H. Frauenfelder, Procc. Natl. A cad. Sci. USA 70, 1967 (1982).Google Scholar
  6. 6.
    H. Frauenfelder, S.C. Sligar and P.G. Wolynes, Science 254, 1598 (1991). Google Scholar
  7. 7.
    Y. A. Berlin, S. F. Fischer, N. I. Chekunaev and V. I. Goldanskii, Chem. Phys. 200, 869 (1995).Google Scholar
  8. 8.
    C. Hofmann, H. Michel, T,J. Aartsma and I. Kochler, Proc. Nat. Acad. Sci. USA 100, 15534 (2003)Google Scholar
  9. 9.
    D. Thorn-Leeson, D. A. Wiersma, K.D. Fritsch and J. Friedrich, J. Phys. Chem. B 101, 6331 (1997).Google Scholar
  10. 10.
    A. E. Garcia, R. Blumenfeld, G. Hummer and J.A. Krumhansl, Physica D 107 , 225 (1997).Google Scholar
  11. 11.
    O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1916 (1997)Google Scholar
  12. 12.
    E.T. Iben, D. Braunstein, W. Doster, H. Frauenfelder, M.K. Hong, J.B. Johnson, S. Luck, P. Ormos, A, Schulte, D.J. Steinbach, A. H. Xie and P.D. Young, Phys. Rev. Lett. 62, 1916 (1989).Google Scholar
  13. 13.
    J. Friedrich and D. Haarer, in Optical Spectroscopy of Classes, I. Zschokke, eds. (D. Reidel Publishing Company, Dordrecht, 1986)Google Scholar
  14. 14.
    W. Koehler, J. Zollfrank and J. Friedrich, Phys. Rev. B 39, 5414 (1989).Google Scholar
  15. 15.
    K.D. Fritsch and J. Friedrich, Physica D 107, 218 (1997).Google Scholar
  16. 16.
    J. Zollfrank, J. Priechich, J.M. Vanderkooi and J. Fidy, J.Chem. Phys. 95, 3134 (1991).Google Scholar
  17. 17.
    J.M. Vanderkooi and M. Erecinska, Eur. J. Biochem. 60, 199 (1975).Google Scholar
  18. 18.
    J.L. Skinner, J. Friudrich and I. SchlirlIter, J. Ph. Chem. A 103, 2310 (1999).Google Scholar
  19. 19.
    T.L Reinecke., Solid State Commun. 32, 1103 (1979).Google Scholar
  20. 20.
    B.M. Kharlamov and G. Zumofen, J. Chem. Phys. 116, 5107 (2002).Google Scholar
  21. 21.
    L. Kador, J. Luminescence 56, 165 (1993)Google Scholar
  22. 22.
    M. Koehler, J. Gafert, J. Friedrich, J.M. Vanderkooi and M. Laberge, Biophys. J. 71, 77 (1996).Google Scholar
  23. 23.
    W. Breinl, J. Friedrich and D. Ilaaer, J. Chem.Phys. 81, 3915 (1984)Google Scholar
  24. 24.
    K.A. Littau and M.D. Fayer, Chem. Phys. Lett. 176, 551 (1991).Google Scholar
  25. 25.
    J. Sedichter and J. Friedrich, J. Chem. Phys. 114, 8718 (2001).Google Scholar
  26. 26.
    V.Y. Ponkmtov, J. Friedrich, D. Markovic, H. Scheer and J.M. Vaderkooi, J. Phys. Chem. B, 108, 1109 (2004).Google Scholar
  27. 27.
    J. Schlichter, J. Friedrich, L. Herenyi and J. Fidy, J. Chem. Phys. 112, 3045 (2000).Google Scholar
  28. 28.
    V.Y. Ponkratov, J. Friedrich and J.M. Vanderkooi, J. Chem. Phys. 117, 4594 (2002).Google Scholar
  29. 29.
    W. Koehler and J. Friedrich, J. Chem. Phys. 90, 1270 (1989)Google Scholar
  30. 30.
    C. Singh, H.J. Schink, H.v. Loehneysen, F. Parak and S. Hunklinger, Z. Phys.B. 55, 23 (1984).Google Scholar
  31. 31.
    I.S. Yang and A.C. Anderson, Phys. Rev. B 34, 2942 (1986).Google Scholar
  32. 32.
    J. Schlichter and J. Friedrich, M. Parbel H. Scheer, Pho. Sci. News 6, 100 (2001).Google Scholar
  33. 33.
    J. Schlichter, J. Friedrich, M. Parbel and H. Scheer, J. Chem. Phys. 114, 9638 (2001).Google Scholar
  34. 34.
    J. Schlichter, V.V. Ponkratov and J. Friedrich, Fizika Nizkib Temp. 29, 1054 (2003).Google Scholar
  35. 35.
    J. Schlichter, J. Friedrich, L. Herenyi and J. Fidy, Biophys. J. 80, 2011 (2001).Google Scholar
  36. 36.
    T. Schlichter, J. Friedrich, L. Herenyi and T. Fidy, J.Phys. Chem. B 106, 3510 (2002).Google Scholar
  37. 37.
    Yu.A. Berlin and A.L. Burin, Chem. Phys. Letters 257, 665 (1996).Google Scholar
  38. 38.
    Yu.A. Berlin, A.L. Burin, L.D. Siebbeles and M.A. Ratner, J. Chem. Phys. A 105, 5666 (2001).Google Scholar
  39. 39.
    A.L. Burin, Yu. A. Berlin, A.Z. Patashinski, M.A. Ratner and J. Friedrich, Physica B 316-317, 321 (2002).Google Scholar
  40. 40.
    F.T.H. den Ilartog, C. van Papendrecht, U. Stoerkel and S. Voelker, J. Chem. Phys. B 103, 1375 (1999).Google Scholar
  41. 41.
    D. Vitkup, D. Ringe, G. Petsko and M. Karplus, Nat. Str. Biol. 7, 34 (2000).Google Scholar
  42. 42.
    W. Doster, S. Cusack and W. Petry, Nature 337, 754 (1989).Google Scholar
  43. 43.
    K. Fritsch, J. Friedrich and B.M. Kharlamov, J. Chem. Phys. 105, 1798 (1996)Google Scholar
  44. 44.
    D. J. Salvino, S. Rogge, B. Tigner and D. D. Osheroff, Phys. Rev. Lett. 73, 268 (1994).Google Scholar
  45. 45.
    A. L. Burin, J. Low Temp. Phys. 100, 309 (1995).Google Scholar
  46. 46.
    A.L. Burin, D. Natelson, D. D. Osheroff and Yu. Kagan, in Tunneling Systems in Amorphous Solids, Chapter 5, P. Esquinazi, eds. (Springer, 1908)Google Scholar
  47. 47.
    P. W. Anderson, B. I. Halperin and C. M. Warma, Philos. Mag. 25, 1 (1972); W. A. Phillips, J. Low Temp. Phys. 7, 351 (1072).Google Scholar
  48. 48.
    J. L. Black and B. I. Halperin, Phys. Rev. B 16, 2879 (1977).Google Scholar
  49. 49.
    S. Hunklinger and A. K. Raychaudhary, Progr. Low Temp. Phys. 9, 267 (1986). Google Scholar
  50. 50.
    Y. A. Berlin, A. L. Burin and S. F. Fischer, Chem. Phys. 220, 25 (1997).Google Scholar
  51. 51.
    P. Neu and A. Heuer J. Chem. Phys. 107, 8686 (1997).Google Scholar
  52. 52.
    A. Z, Patashinski, private communication.Google Scholar
  53. 53.
    Y. Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 84, 792 (1983); Y. Kagan and L. A, Maksimov, Zh. Eksp.Teor. Fiz. 79, 1363 (1980).Google Scholar
  54. 54.
    V. B. Kokshenev, J. Low Temp. Phys. 20, 373 (1975)Google Scholar
  55. 55.
    I. S. Tupitsyn, N. V. Prokofev and P. C. E. Stamp, Int. J. Mod. Phys. B 11, 2901 (1997).Google Scholar
  56. 56.
    Yu. A. Berlin, A. L. Burin and V. I. Goldanskii, Z. Phys. 37, 333 (1996).Google Scholar
  57. 57.
    X. Li, D. Clarkson and H. Meyer, J. Low Temp. Phys. 78, 335 (1990).Google Scholar
  58. 58.
    R. Wunderlich, H. Maier, D. Haarer and B. M. Kharlamov, J. Phys. Chem. B 102, 10150 (1998).Google Scholar
  59. 59.
    A. Nittke, P. Esquinazi, H. C. Semmelhack, A. L. Burin and A. Z. Patashinkii, Eur. Phys. J. B 8, 19 (1999).Google Scholar
  60. 60.
    A. Nittke, P. Esquinazi and A. L. Burin, Phys. Rev. B 58, 5374 (1998).Google Scholar
  61. 61.
    S. K. Watson and R. O. Pohl, Phys. Rev. B 68, 104203 (2003).Google Scholar
  62. 62.
    N. V. Prokofev, I. S. Tupitsyn and A. L. Burin, unpublished.Google Scholar
  63. 63.
    P. Neu, R. J. Silbey, A. Heuer, S. J. Zilker and D. Haarer, J. Luminesc. 76, 619 (1998); H. Maier, B. M. Kharlamov and D, IIaaer, Phys. Rev. Lett. 76, 2085 (1996).Google Scholar
  64. 64.
    C. Scharnagl, to be publishedGoogle Scholar
  65. 65.
    B. Zelent, A.D, kaposi, N.V. Nucci, K.A. Sharp, S.D. Dalosto, W.W. Wrihgt and J. M. Vanderkooi, to be published.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Vladimir V. Ponkratov
    • 1
  • Josef Friedrich
    • 1
  • Jane M. Vanderkooi
    • 2
  • Alexander L. Burin
    • 3
  • Yuri A. Berlin
    • 4
  1. 1.Physics Department E14 and Lehrstuhl für Physik WeihenstephanTechnische Universität MünchenD-853350 FreisingGermany
  2. 2.Department of Biochemistry and BiophysicsUSA
  3. 3.Department of ChemistryTulane UniversityNew OrleansUSA
  4. 4.Department of ChemistryNorthwestern UniversityUSA

Personalised recommendations