Journal of Low Temperature Physics

, Volume 136, Issue 1–2, pp 57–91 | Cite as

Turnstile Behaviour of the Cooper Pair Pump

  • J. J. Toppari
  • J. M. Kivioja
  • J. P. Pekola
  • M. T. Savolainen


We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling E J < E C . These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener (LZ) limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the gate plane. We show that this reproduces the turnstile-kind of behavior. To overcome the contradiction between the obtained e-periodic DC modulation and a pure 2e-behaviour in the RF measurements, we base our observations on a general principle that the system always minimises its energy. It suggests that if the excess quasiparticles in the system have a freedom to tunnel, they will organize themselves to the configuration yielding the highest current.

Cooper pair pump Josephson tunnelling Superconductivity quantum bit mesoscopic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Thouless, Phys. Rev. B 27, 6083 (1983).Google Scholar
  2. 2.
    L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).Google Scholar
  3. 3.
    J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A. Ritchie, J. E. F. Frost, C. J. B. Ford, C. G. Smith and G. A. C. Jones, J. Phys. Cond. Matter 8, L531 (1996).Google Scholar
  4. 4.
    V. I. Talyanskii, J. M. Shilton, M. Pepper, C. G. Smith, C. J. B. Ford, E. H. Linfield, D. A. Ritchie and G. A. C. Jones, Phys. Rev. B 56, 15180 (1997).Google Scholar
  5. 5.
    H. Pothier, P. Lafarge, P. F. Orfila, C. Urbina, D. Esteve and M. H. Devoret, Physica B 169573 (1991) [Europhys. Lett. 17, 249 (1992)].Google Scholar
  6. 6.
    M. W. Keller, J. M. Martinis, N. N. Zimmerman and A. H. Steinbach Appl. Phys. Lett. 69, 1804 (1996).Google Scholar
  7. 7.
    M. W. Keller, J. M. Martinis and R. L. Kautz, Phys. Rev. Lett. 80, 4530 (1998).Google Scholar
  8. 8.
    K. K. Likharev and A. B. Zorin J. Low Temp. Phys. 59, 347 (1985).Google Scholar
  9. 9.
    D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).Google Scholar
  10. 10.
    D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989).Google Scholar
  11. 11.
    L. J. Geerligs, D. V. Averin and J. E. Mooij, Phys. Rev. Lett. 65, 3037 (1990).Google Scholar
  12. 12.
    H. D. Jensen and J. M. Martinis, Phys. Rev. B 46, 13407 (1992).Google Scholar
  13. 13.
    D. V. Averin, A. A. Odintsov and S. V. Vyshenskii, J. Appl. Phys. 73, 1297 (1993).Google Scholar
  14. 14.
    J. M. Martinis, M. Nahum and H. D. Jensen, Phys. Rev. Lett. 72, 904 (1994).Google Scholar
  15. 15.
    L. R. C. Fonseca, A. N. Korotkov and K. K. Likharev, Appl. Phys. Lett. 69, 1858 (1996).Google Scholar
  16. 16.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, UK, 1964).Google Scholar
  17. 17.
    J. P. Pekola, J. J. Toppari, M. Aunola, M. T. Savolainen and D. V. Averin, Phys. Rev. B 60, R9931 (1999).Google Scholar
  18. 18.
    M. Aunola, J. J. Toppari and J. P. Pekola, Phys. Rev. B 62, 1296 (2000).Google Scholar
  19. 19.
    A. B. Zorin, S. A. Bogoslovsky, S. V. Lotkhov and J. Niemeyer, in Macroscopic Quantum Coherence and Quantum Computing, edited by D. V. Averin, B. Ruggiero, and P. Silverstrini, MQC2 Instituto Italiano per gli Studi Filosofici (Kluwer Academic / Plenum, New York, 2001), p. 147Google Scholar
  20. 20.
    A. O. Niskanen, J. P. Pekola, and H. Seppä, Phys. Rev. Lett. 91, 177003 (2003).Google Scholar
  21. 21.
    Y. Nakamura, Y. A. Pashkin and J. S. Tsai, Nature 398, 786 (1999).Google Scholar
  22. 22.
    J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).Google Scholar
  23. 23.
    C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, and J. E. Mooij, Science 290, 773 (2000).Google Scholar
  24. 24.
    D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296, 886 (2002).Google Scholar
  25. 25.
    Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).Google Scholar
  26. 26.
    D. V. Averin, Solid State Commun. 105, 659 (1998).Google Scholar
  27. 27.
    J. P. Pekola, and J. J. Toppari, Phys. Rev. B 64, 172509 (2001).Google Scholar
  28. 28.
    R. Fazio, F. W. J. Hekking, and J. P. Pekola, Phys. Rev. B 68, 054510 (2003).Google Scholar
  29. 29.
    K. A. Matveev, M. Gisselfält, L. I. Glazman, M. Jonson, and R. I. Shekhter, Phys. Rev. Lett. 70, 2940 (1993).Google Scholar
  30. 30.
    P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 72, 2458 (1994).Google Scholar
  31. 31.
    L. J. Geerligs, S. M. Verbrugh, P. Hadley, J. E. Mooij, H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Z. Phys. B 85, 349 (1991).Google Scholar
  32. 32.
    M. Aunola, Phys. Rev. B 63, 132508 (2001).Google Scholar
  33. 33.
    S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, and J. Niemeyer, in International Workshop on Superconducting Nano-Electronics Devices, edited by J. P. Pekola, B. Ruggiero, and P. Silvestrini, SNED (Plenum, Naples, Italy, 2001), p. 105.Google Scholar
  34. 34.
    D. V. Averin, and K. K. Likharev, in Mesoscopic Phenomena in Solids, edited by B. L. Althschuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam, 1991), p. 213.Google Scholar
  35. 35.
    A. M. van den Brink, A. A. Odintsov, P. A. Bobbert, and G. SchÖn, Z. Phys. B 85, 459(1991).Google Scholar
  36. 36.
    E. N. Bibow, Ph.D. thesis, de l'Université Joseph Fourier-Grenoble I en Physique (2001).Google Scholar
  37. 37.
    M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).Google Scholar
  38. 38.
    M. Aunola and J. J. Toppari, Phys. Rev. B 68, 20502 (2003).Google Scholar
  39. 39.
    P. Lafarge, P. Joyez, D. Esteve, C. Urbina and M. H. Devoret, Nature 365, 422 (1993).Google Scholar
  40. 40.
    A. B. Zorin Rev. Sci. Instrum 66, 4296 (1995).Google Scholar
  41. 41.
    D. Vion, P. F. Orfila, P. Joyez, D. Esteve and M. H. Devoret J. Appl. Phys. 77, 2519 (1995).Google Scholar
  42. 42.
    The circuit has been designed and contructed by Kari Loberg and controlling software has been done using Lab View(r)_by Sampo Tuukkanen at the Department of Physics, University of Jyväskylä.Google Scholar
  43. 43.
    T. A. Fulton P. L. Gammel, D. J. Bishop, L. N. Dunkleberger, and G. J. Dolan, Phys. Rev. Lett 63, 1307 (1989).Google Scholar
  44. 44.
    D. V. Averin and V. Ya. Aleshkin Pis'ma Zh. Éksp. Teor. Fiz. 50, 331 (1989) [JETP Lett. 50,367 (1989)]Google Scholar
  45. 45.
    Y. Nakamura, C. D. Chen and J. S. Tsai Phys. Rev. B 53, 8234 (1996).Google Scholar
  46. 46.
    V. Ambegaokar and A. Baratoff Phys. Rev. Lett. 10, 486 (1963), Erratum 11, (1963) 104.Google Scholar
  47. 47.
    M. Tinkham Introduction to Superconductivity 2nd ed. (McGraw-Hill, New York, 1996), pp. 257–277.Google Scholar
  48. 48.
    S. Farhangfar, K. P. Hirvi, J. P. Kauppinen, J. P. Pekola, J. J. Toppari, D. V. Averin, and A. N. Korotkov J. Low Temp. Phys. 108, 191 (1997).Google Scholar
  49. 49.
    M. T. Tuominen, J. M. Hergenrother, T. S. Tighe and M. Tinkham Phys. Rev. Lett. 69, 1997 (1992).Google Scholar
  50. 50.
    G.-L. Ingold and Yu. V. Nazarov, Single Charge Tunnelling, Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert and M. H. Devoret (Plenum, New York, 1992), ch. 2, p. 21.Google Scholar
  51. 51.
    M. Tinkham, J. M. Hergenrother, and J. G. Lu, Phys. Rev. B 51, 12649 (1995).Google Scholar
  52. 52.
    R. C. Dynes and J. P. Garno, Phys. Rev. Lett. 53,2437 (1984).Google Scholar
  53. 53.
    J. P. Pekola, T. T. Heikkilä, A. M. Savin, J. T. Flyktman, F. Giazotto, and F. W. J. Hekking, Phys. Rev. Lett. 92, 056804 (2004).Google Scholar
  54. 54.
    K. Andersson, P. Delsing, and D. Haviland, Phys. B 248-288, 1816 (2000).Google Scholar
  55. 55.
    L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).Google Scholar
  56. 56.
    J. Delahaye, J. Hassel, R. Lindell, M. Sillanpää, M. Paalanen, H. Seppä and P. Hakonen, Science 299, 1045 (2003).Google Scholar
  57. 57.
    P. Ao and J. Rammer, Phys. Rev. B 43, 5397 (1991).Google Scholar
  58. 58.
    E. Bibow, P. Lafarge, and L. P. Lévy, Phys. Rev. Lett. 88, 017003 (2002).Google Scholar
  59. 59.
    J. Aumentado, M. W. Keller, and J. M. Martinis, Phys. Rev. Lett. 92, 066802 (2004).Google Scholar
  60. 60.
    L. J. Geerligs, V. F. Anderegg, J. Romijn, and J. E. Mooij, Phys. Rev. Lett. 65, 377 (1991).Google Scholar
  61. 61.
    P. Lafarge, H. Pothier, E. R. Williams, D. Esteve, C. Urbina, and M. H. Devoret, Z. Phys. B, 85, 327 (1991).Google Scholar
  62. 62.
    A. Romito, F. Plastina, and R. Fazio (2002), cond-mat/0212414.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • J. J. Toppari
    • 1
  • J. M. Kivioja
    • 2
  • J. P. Pekola
    • 2
  • M. T. Savolainen
    • 1
  1. 1.Department of Physics, NanoScience CenterUniversity of JyväskyläFinland; E-mail:
  2. 2.Low Temperature LaboratoryHelsinki University of TechnologyFinland

Personalised recommendations