Journal of Low Temperature Physics

, Volume 136, Issue 1–2, pp 1–13 | Cite as

Quartz Tuning Fork Viscometers for Helium Liquids

  • D. O. Clubb
  • O. V. L. Buu
  • R. M. Bowley
  • R. Nyman
  • J. R. Owers-Bradley


Mechanical resonators, in the form of vibrating wires or torsional oscillators, have long been employed as sensors in liquid 3He and 3He–4He mixtures. The damping of resonators is due to the viscosity of the surrounding liquid which is a strong, well-known function of temperature for bulk Fermi liquids. It is therefore possible to use the viscous damping for thermometry in the millikelvin regime. An alternative sensor is the small quartz tuning fork which is driven by the piezoelectric effect and requires no external magnetic field. In this paper, we present measurements of the viscous damping of such a tuning fork when immersed in a 6.2% 3He–4He mixture, between 3 and 100 mK, and at zero and high (10 T) magnetic field. The measurements indicate that damping of the tuning fork resonance is dominated by the liquid helium properties and is insensitive to the applied magnetic field. The response of the tuning fork to the saturated helium mixture demonstrates that it could potentially be used for thermometry in any magnetic field. There is evidence of slip at the interface between the fork and the helium suggesting specular scattering from the smooth surface of the quartz. The fork is also able to detect the superfluid transition in pure liquid 3He.

Tuning fork Helium liquids Viscometers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Karra? and R. D. Grober, Ultra-microscopy 61, 197 (1995).Google Scholar
  2. 2.
    K. Karra? and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).Google Scholar
  3. 3.
    R. N. Kleiman, G. K. Kaminsky, J. D. Reppy, R. Pindak, and D. J. Bishop, Rev. Sci. Instrum. 56, 2088 (1985).Google Scholar
  4. 4.
    W. Ruesink, J. P. Harrison, and A. Sachrajda, J. Low Temp. Phys. 70, 393 (1988).Google Scholar
  5. 5.
    S. N. Fisher, A. M. Guénault, D. A. Jackson, G. R. Pickett, K. Torizuka, and R. P. Turner, J. Low Temp. Phys. 100, 241 (1995).Google Scholar
  6. 6.
    A. M. Guénault, T. R. Nichols, and G. R. Pickett, J. Low Temp. Phys. 81, 179 (1990).Google Scholar
  7. 7.
    E. O. Tuck, J. Eng. Math. 3, 29 (1969).Google Scholar
  8. 8.
    J. E. Sader, J. Appl. Phys. 84, 64 (1998).Google Scholar
  9. 9.
    H. H. Jensen, H. Smith, P. Wolfle, K. Nagai, and T. M. Bisgaard, J. Low Temp. Phys. 41, 473 (1980).Google Scholar
  10. 10.
    J. Martikainen, J. Tuoriniemi, T. Knuuttila, and G. Pickett, J. Low Temp. Phys. 126, 139 (2002).Google Scholar
  11. 11.
    S. Perisanu and G. Vermeulen, submitted for publication.Google Scholar
  12. 12.
    H. Ito, M. Nakazawa, Electronics Commun. Japan, Part 3 (Fundamental Electronic Science) 74, 19 (1991).Google Scholar
  13. 13.
    M. Christen, Sens. Actuators 4, 555 (1983).Google Scholar
  14. 14.
    Both results (4) and (5) can be derived after some algebra from standard formulae found for example in S. Temkin, Elements of Acoustics(Wiley, New York 1981), Chapter 5.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • D. O. Clubb
    • 1
  • O. V. L. Buu
    • 1
  • R. M. Bowley
    • 1
  • R. Nyman
    • 1
  • J. R. Owers-Bradley
    • 1
  1. 1.School of Physics and AstronomyThe University of NottinghamU.K

Personalised recommendations