Journal of Low Temperature Physics

, Volume 135, Issue 5–6, pp 793–821 | Cite as

SQUID-Detected Magnetic Resonance Imaging in Microtesla Magnetic Fields

  • R. McDermott
  • N. Kelso
  • S-K. Lee
  • M. Mößle
  • M. Mück
  • W. Myers
  • B. ten Haken
  • H.C. Seton
  • A.H. Trabesinger
  • A. Pines
  • J. Clarke
Article

Abstract

We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging.

SQUID nuclear magnetic resonance magnetic resonance imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, (1961).Google Scholar
  2. 2.
    C.P. Slichter, Principles of Nuclear Magnetic Resonance, 3rd ed., Springer Verlag, New York (1990).Google Scholar
  3. 3.
    P.C. Lauterbur, Nature 242, 190(1973).Google Scholar
  4. 4.
    P. Mansfield and P.K. Grannell, J. Phys. C Solid State 6, L422(1973).Google Scholar
  5. 5.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon, Oxford (1991).Google Scholar
  6. 6.
    M. Packard and R. Varian, Phys. Rev. 93, 941(1954).Google Scholar
  7. 7.
    A. Macovski and S. Connolly, Magn. Reson. Med. 30, 221(1993).Google Scholar
  8. 8.
    J. Stepišnik, V. Eržen, and M. Kos, Magn. Reson. Med. 15, 386(1990).Google Scholar
  9. 9.
    G.J. Béné, Phys. Rep. 58, 213(1980).Google Scholar
  10. 10.
    J. Clarke, in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock (ed.), Kluwer Academic Publishers, Dordrecht (1996).Google Scholar
  11. 11.
    Ya.S. Greenberg, Rev. Mod. Phys. 70, 175(1998).Google Scholar
  12. 12.
    R. McDermott, A.H. Trabesinger, M. Mück, E.L. Hahn, Alex Pines, and John Clarke, Science 295, 2247(2002).Google Scholar
  13. 13.
    R. McDermott, S-K. Lee, B. ten Haken, A.H. Trabesinger, Alex Pines, and John Clarke, unpublished.Google Scholar
  14. 14.
    H.C. Seton, J.M.S. Hutchison, and D.M. Bussell, Meas. Sci. Technol. 8, 198(1997).Google Scholar
  15. 15.
    R.C. Jaklevic, J. Lambe, A.H. Silver, and J.E. Mercereau, Phys. Rev. Lett. 12, 159(1964).Google Scholar
  16. 16.
    B.D. Josephson, Phys. Lett. 1, 251(1962).Google Scholar
  17. 17.
    F. London, Superfluids, Wiley, New York (1950).Google Scholar
  18. 18.
    W.C. Stewart, Appl. Phys. Lett. 12, 277(1968).Google Scholar
  19. 19.
    D.E. McCumber, J. Appl. Phys. 39, 3113(1968).Google Scholar
  20. 20.
    M.B. Ketchen and J.M. Jaycox, Appl. Phys. Lett. 40, 736(1982).Google Scholar
  21. 21.
    M. Gurvitch, M.A. Washington, and H.A. Huggins, Appl. Phys. Lett. 42, 472(1983).Google Scholar
  22. 22.
    C.D. Tesche and J. Clarke, J. Low Temp. Phys. 27, 301(1977).Google Scholar
  23. 23.
    E.L. Hahn, Phys. Rev. 80, 580(1950).Google Scholar
  24. 24.
    W.G. Proctor and F.C. Yu, Phys. Rev. 77, 717(1950).Google Scholar
  25. 25.
    E.L. Hahn and D.E. Maxwell, Phys. Rev. 88, 1070(1952).Google Scholar
  26. 26.
    C.H. Tseng, G.P. Wong, V.R. Pomeroy, R.W. Mair, D.P. Hinton, D. Hoffmann, R.E. Stoner, F.W. Hersman, D.G. Cory, R.L. Walsworth, Phys. Rev. Lett. 81, 3785(1998).Google Scholar
  27. 27.
    M. Goldman, Quantum Description of High-Resolution NMR in Liquids, Clarendon, Oxford (1988).Google Scholar
  28. 28.
    G. Planinšič, J. Stepišnik, and M. Kos, J. Magn. Reson. A110, 170(1994).Google Scholar
  29. 29.
    H.C. Seton, D.M. Bussell, and J.M.S. Hutchison, Liquified Gas Cryostat, UK Patents GB2331798 and GB2351549.Google Scholar
  30. 30.
    P.A. Bottomley, J. Phys. E Sci. Instrum. I 14, 1081(1981).Google Scholar
  31. 31.
    A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs (1989).Google Scholar
  32. 32.
    A.H. Trabesinger, R. McDermott, S-K. Lee, M. Mück, John Clarke, and Alex Pines, J. Phys. Chem., to be published.Google Scholar
  33. 33.
    J. Vrba, in SQUID Sensors: Fundamentals, Fabrication and Applications, Kluwer Academic, Dordrecht (1996), pp. 117-178.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • R. McDermott
    • 1
    • 2
  • N. Kelso
    • 1
    • 2
  • S-K. Lee
    • 1
    • 2
  • M. Mößle
    • 1
    • 2
  • M. Mück
    • 1
    • 2
  • W. Myers
    • 1
    • 2
  • B. ten Haken
    • 1
    • 2
  • H.C. Seton
    • 4
  • A.H. Trabesinger
    • 1
    • 3
  • A. Pines
    • 1
    • 5
  • J. Clarke
    • 1
    • 2
  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  3. 3.National Institute of Standards and TechnologyBoulderUSA
  4. 4.Institute of Applied PhysicsJustus Liebig UniversityGiessenGermany
  5. 5.USA. Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations