Advertisement

Journal of Low Temperature Physics

, Volume 134, Issue 5–6, pp 1055–1068 | Cite as

Magnetic Anisotropy and de Haas–van Alphen Oscillations in a Bi Microwire Array Studied via Cantilever Magnetometry at Low Temperatures

  • M. J. Graf
  • C. P. Opeil
  • T. E. Huber
Article

Abstract

We report measurements of the low temperature (T=0.5 K) oscillatory magnetization in a high-density array of 50μm diameter wires of polycrystalline Bi utilizing a high sensitivity silicon cantilever magnetometer. We find that the magnetic response is strongly anisotropic, being much larger for magnetic field perpendicular than for fields parallel to the wire-axis. We argue that this is a geometric effect caused by the large aspect ratio of the individual microwires in the array. The magnetic response of the microwires is dominated by the light electrons due to the larger cyclotron orbits in comparison with the heavier holes. We find that de Haas–van Alphen oscillations are easily resolved, and discuss the application of this technique to the study of Bi nanowire arrays.

bismuth magnetometry nanowires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Garcia, Y. H. Kao, and M. Strogin, Phys. Rev. B 5, 2029(1972).Google Scholar
  2. 2.
    V. B. Sandormirskii, Sov. Phys. JEPT 25, 101(1967).Google Scholar
  3. 3.
    A. N. Friedman and S. H. Koenig, IBM Res. Develop. Journal 4, 158(1960).Google Scholar
  4. 4.
    S. Edelman, Zh. Eksp. Teor. Fiz. 68, 257(1975) [Sov. Phys. JETP 41, 125 (1975)].Google Scholar
  5. 5.
    Y. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610(2000).Google Scholar
  6. 6.
    A. Nikolaeva, D. Gitsu, T. Huber, and L. Konopko, Physica B, in press.Google Scholar
  7. 7.
    T. E. Huber, M. J. Graf, and C. A. Foss, Jr., J. Mater. Res. 15, 1816(2000).Google Scholar
  8. 8.
    J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Manfield, Phys. Rev. B 61, 2921(2000).Google Scholar
  9. 9.
    K. Liu, C. L. Chien, and P. C. Searson, Phys. Rev. 58, R14681(1998).Google Scholar
  10. 10.
    H. J. Goldsmid, in Electronic Refrigeration, 2nd edn., Pion, London (1986), pp. 104-110.Google Scholar
  11. 11.
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727(1993).Google Scholar
  12. 12.
    M. Dresselhaus et al., Materials Science and Engineering C 23, 129(2003).Google Scholar
  13. 13.
    J. P. Heremans, C. M. Thrush, D. T. Moreli, and M.-C. Wu, Phys. Rev. Lett. 88, 216801(2002).Google Scholar
  14. 14.
    T. E. Huber et al., J. Thermoelectricity, in press.Google Scholar
  15. 15.
    N. B. Brandt, D. V. Gitsu, A. A. Nikolaeva, and Y. G. Ponomarev, Zh. Eksp.Teor. Fiz. 72, 2332(1977) [Sov. Phys. JETP 45, 1226 (1977)]. N. B. Brandt, D. B. Gitsu, V. A. Dolma and Y. G. Ponomarev, Zh. Eksp. Teor. Fiz. 92, 913(1987) [Sov. Phys. JETP 65, 515 (1987)].Google Scholar
  16. 16.
    H. de Raedt, in Annual Review of Computational Science IV, D. Stauffer (ed.), World Scientific, N.Y. (1996).Google Scholar
  17. 17.
    C. A. Hoffman, et al., Phys. Rev. B 48, 11431(1993); ibid, 51, 5535 (dy1995).Google Scholar
  18. 18.
    T. E. Huber, et al., submitted for publication.Google Scholar
  19. 19.
    T. E. Huber, K. Celestine, and M. J. Graf, Phys. Rev. B 67, 245317(2003).Google Scholar
  20. 20.
    R. N. Bhargava, Phys. Rev. 156, 785(1967).Google Scholar
  21. 21.
    F. E. Richards, Phys. Rev. B 8, 2552(1973).Google Scholar
  22. 22.
    T. E. Huber, M. J. Graf, and C. A. Foss, Jr., J. Mater. Res. 15, 1816(2000).Google Scholar
  23. 23.
    H. T. Chu and D. D. Franket, Phys. Rev. B 62, 16792(2000).Google Scholar
  24. 24.
    R. M. Metzger et al., IEEE Trans. Magn. 36, 30(2000); T. E. Huber and L. Luo, Appl. Phys. Lett. 70, 502 (1997).Google Scholar
  25. 25.
    J. A. Osborn, Phys. Rev. 67, 351(1945).Google Scholar
  26. 26.
    M. V. Chaparala, O. H. Chung, and M. J. Naughton, AIP Conf. Proc. 273, 407(1993).Google Scholar
  27. 27.
    C. P. Opeil, A. de Visser, M. J. Naughton, and M. J. Graf, J. Magn. Magn. Mater., in press.Google Scholar
  28. 28.
    D. Schoenberg and M. Zaki Uddin, Proc. Roy. Soc. A 156, 687(1936). Note the susceptibility values in that work are per mass (cgs) and have been multiplied by 9.8 to obtain the volumetric susceptibility.Google Scholar
  29. 29.
    R. D. Brown, III, Phys. Rev. B 2, 928(1979).Google Scholar
  30. 30.
    See, for example, E. N. Adams, II, Phys. Rev. 89, 633(1953).Google Scholar
  31. 31.
    See, L. M. Roth and P. N. Argyres, in Semiconductors and Semimetals, v. 1, R. K. Willardson and A. C. Beer (eds.), Academic Press, San Diego (1966), pp. 159-202.Google Scholar
  32. 32.
    F. Y. Yang, et al., Phys. Rev. B 61, 6631(2000).Google Scholar
  33. 1.
    Since the completion of this work we have acquired a cantilever that is about 50% thinner than the one used here.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. J. Graf
    • 1
  • C. P. Opeil
    • 1
  • T. E. Huber
    • 2
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA
  2. 2.Laser LaboratoryHoward UniversityWashington, DCUSA

Personalised recommendations