Journal of Low Temperature Physics

, Volume 134, Issue 1–2, pp 387–392 | Cite as

The Stability of the Superfluid 3He AB Interface Pinned in an Aperture

  • M. Bartkowiak
  • D. I. Bradley
  • S. N. Fisher
  • A. M. Guénaugt
  • R. P. Haley
  • G. R. Pickett
  • P. Skyba
Article

Abstract

We have been measuring the surface tension of the AB interface at zero pressure, in high magnetic fields and low temperatures below 0.2 Tc. We manipulate the phase boundary by controlling a magnetic field profile. We use the latent heat released/absorbed as the phase boundary moves to infer its position and velocity. We have observed that the motion of the interface through a small aperture is dependent on the magnetic field gradient. Here we extend numerical methods first used to calculate the shapes of liquid drops in a gravitational field to show that the gradient dependence can be accounted for by the deformation of the interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. J. Leggett and S. K. Yip,in:W. P. Halperin L. P. Pitaevskii eds., Helium Three, Elsevier Science Publisher BX(1990).Google Scholar
  2. 2.
    M. C. Cross, in:S. B. Trickeyet al. (eds.), Quantum Fluids and Solids, Plenum Press, New York (1977).Google Scholar
  3. 3.
    E. V. Thuneberg, Phys. Rev. B 44, 9685 (1991).Google Scholar
  4. 4.
    N. Schopohl, Phys. Rev. Lett. 58, 1664 (1987)Google Scholar
  5. 5.
    R. Kaul and H. Kleinert, J. Low Temp. Phys. 38, 539 (1980)Google Scholar
  6. 6.
    E. V. Thuneberg, Physica B 178, 168 (1992).Google Scholar
  7. 7.
    C. M. Gould, Physica B 178, 266 (1992)Google Scholar
  8. 8.
    D. D. Osheroff and M. C. Cross, Phys. Rev. Lett. 38, 905 (1977).Google Scholar
  9. 9.
    M. Bartkowiak, R. P. Haley, S. N. Fisher, A. M. Guenaugt, G. R. Pickett and P. Skyba, Physica B 329-333, Part 1, 122 (2003).Google Scholar
  10. 10.
    M. Bartkowiaket al.,unpublished.Google Scholar
  11. 11.
    Inseob Hahn, Y. H. Tang, H. M. Bozler and C. M. Gould, Physica B 194-196, 815 (1994).Google Scholar
  12. 12.
    M. Bartkowiak, S. W. J. Daley, S. N. Fisher, A. M. Guenaugt, G. N. Plenderleith, R. P. Haley, G. R. Pickett and P. Skyba, Phys. Rev. Lett. 83, 3462 (1999).Google Scholar
  13. 13.
    C. Pozrikidis, Fluid Dynamics: Theory, Computation and Numerical Simulation Kluwer Academic Publishers, Boston,(2001)source code:http://stokes.ucsd.edu/c_pozrikidis/FDLIB/FDLIB/03-hydrostat/drop.ax/ (as part of the FDLIB).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • M. Bartkowiak
    • 1
  • D. I. Bradley
    • 1
  • S. N. Fisher
    • 1
  • A. M. Guénaugt
    • 1
  • R. P. Haley
    • 1
  • G. R. Pickett
    • 1
  • P. Skyba
    • 2
  1. 1.Department of PhysicsLancaster UniversityLancasterUK
  2. 2.Institute of Experimental Physics, Slovak Academy of SciencesKošiceSlovakia

Personalised recommendations