Journal of Insect Behavior

, Volume 17, Issue 4, pp 459–476 | Cite as

The Sweet Tooth of Adult Parasitoid Cotesia rubecula: Ignoring Hosts for Nectar?

  • Gitta Siekmann
  • Michael A. Keller
  • Brigitte Tenhumberg
Article

Abstract

Investing time and energy into survival and reproduction often presents a trade-off to many species of animals. In parasitic wasps, both hosts and sugar sources contribute to the forager's fitness but are often found in different locations. The decision to search for hosts or for food can have a strong impact on fitness when the forager's lifetime is short and resources are not abundant. We investigated the tendency of flowers and hosts to attract 1-day-old female Cotesia rubecula Marshall (Hymenoptera: Braconidae) with different feeding histories in a wind tunnel. Only well-fed wasps exhibited a preference for hosts. In comparison, unfed wasps visited hosts and flowers in equal proportions. Feeding experience had a strong impact on the searching behavior and the number of landings on both resources. Host and food stimuli seem to be equally attractive to hungry parasitic wasps such as C. rubecula. We expect that under field conditions the time available for active food searching in female C. rubecula is short and influenced by the presence of hosts.

foraging behavior food experience flowers energy state conservation of natural enemies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Baggen, R. L., and Gurr, G. M. (1998). The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biol. Control 11: 9–17.Google Scholar
  2. Bigger, D. S., and Chaney, W. E. (1998). Effects of Iberis umbellata (Brassicacea) on insect pests of cabbage and on potential biological control agents. Environ. Entomol. 27: 161–167.Google Scholar
  3. Breed, M. D., and Julian, G. E. (1992). Do simple rules apply in honey-bee nestmate discrimination? Nature 357: 685–686.Google Scholar
  4. Cappuccino, N., Houle, M.-J., and Stein, J. (1999). The influence of understorey nectar resources on parasitism of the spruce budworm Choristoneura fumiferana in the field. Agric. Forest Entomol. 1: 33–36.Google Scholar
  5. Casas, J., Driessen, G., Mandon, N., Wielaard, S., Desouhant, E., Alphen, J. van, Lapchin, L., Rivero, A., Christides, J. P., and Bernstein, C. (2003). Energy dynamics in a parasitoid foraging in the wild. J. Anim. Ecol. 72: 691–697.Google Scholar
  6. Chippendale, G.M. (1978). The functions of carbohydrates in insect life processes. In Rockstein, M. (ed.), Biochemistry of Insects, Academic Press, New York, pp. 2–55.Google Scholar
  7. Cowgill, S. E. (1995). Influence of the chickpea cropping system on Helicoverpa armigera (Lep.: Noctuidae) populations and their rate of parasitism by Campoletis chloridae (Hym.: Ichneuminidae). Entomophaga 40: 307–315.Google Scholar
  8. Den Otter, C. J., Tchicaya. T., and Schutte, A. M. (1991). Effects of age, sex and hunger on the antennal olfactory sensitivity of tsetse flies. Physiol. Entomol. 16: 173–182.Google Scholar
  9. Dethier, V. G. (1982). Mechanism of host-plant recognition. Entomol. Exp. Appl. 31: 49–56.Google Scholar
  10. Field, S. A., and Keller, M. A. (1993). Courtship and intersexual signaling in the parasitic wasp Cotesia rubecula (Hymenoptera: Braconidae). J. Insect Behav. 6: 737–750.Google Scholar
  11. Fletcher, J. P., Hughes, J. P., and Harvey, I. F. (1994). Life expectancy and egg load affect oviposition decisions of a solitary parasitoid. Proc. R. Soc. Lond. [Biol] 258: 163–167.Google Scholar
  12. Goodman, L. A. (1968). The analysis of cross-classified data: Independence, quasiindependence and interactions in contingency tables with or without missing entries. J. Am. Stat. Assoc. 63: 1091–1131.Google Scholar
  13. Geervliet, J., Ariens, S., Dicke, M., and Vet, L. (1998). Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and Cotesia rubecula (Hymenoptera, Braconidae). Biol. Control 11: 113–121.Google Scholar
  14. Haccou, P., and Meelis. E. (1995). Statistical Analysis of Behavioral Data, Oxford University Press, New York.Google Scholar
  15. Hagley, E. A. C., and Barber, D. R. (1992). Effect of food sources on the longevity and fecundity of Pholetesor ornigis (Weed) (Hymenoptera: Braconidae). Can. Entomol. 124: 341–346.Google Scholar
  16. Heimpel, G. E., Rosenheim, J. A., and Kattari, D. (1997). Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol. Exp. Appl. 83: 305–315.Google Scholar
  17. Heimpel, G. E., Mangel, M., and Rosenheim, J. A. (1998). Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. Am. Nat. 152: 273–289.Google Scholar
  18. Idris, A. B., and Grafius. E. (1995). Wildflowers as nectar source for Diadegma insulare (Hymenoptera: Ichneumonidae). a parasitoid of diamond back moth (Lepidoptera: Yponomeutidae). Environ. Entomol. 24: 1726–1735.Google Scholar
  19. Jervis, M. A., Kidd, N. A. C., and Heimpel, G. E. (1996). Parasitoid adult feeding behaviour and biocontrol—A review. Biocontrol News Informat. 17: 11N-26N.Google Scholar
  20. Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., and Dawah, H. A. (1993). Flowervisiting by hymenopteran parasitoids. J. Nat. His. 27: 67–105.Google Scholar
  21. Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A., and Kidd, N. A. C. (2001). Life-history strategies in parasitoid wasps: A comparative analysis of 'ovigeny.' J. Anim. Ecol. 70: 442–458.Google Scholar
  22. Kaiser, L., and Carde, R. T. (1992). In-flight orientation to volatiles from the plant-host complex in Cotesia rubecula (Hym.: Braconidae): Increased sensitivity through olfactory experience. Physiol. Entomol. 17: 62–67.Google Scholar
  23. Kloen, H., and Altieri, M. A. (1990). Effect of mustard (Brassica hirta) as a non crop plant on competition and insect pests in broccoli (Brassica olearacea). Crop Protect. 9: 90–96.Google Scholar
  24. Leius, K. (1961). Influence of food on fecundity and longevity of adults of Itoplectis conquisitor (Say) (Hymenoptera: Ichneumonidae). Can. Entomol. 93: 771–780.Google Scholar
  25. Leius, K. (1967). Food sources and preferences of adults of a parasite, Scambus buolianae (Hym.: Ichn.), and their consequences. Can. Entomol. 99: 865–871.Google Scholar
  26. Lewis, W. J., and Stapel, J. O. (1998). Understanding how parasitoids balance food and host needs—Importance to biological control. Biol. Control 11: 175–183.Google Scholar
  27. Lewis, W. J., and Takasu, K. (1990). Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348: 635–636.Google Scholar
  28. Maingay, H. M., Bugg, R. L., Carlson, R.W., and Davidson, N. A. (1991). Predatory and parasitic wasps (Hymenoptera) feeding at flowers on sweet fennel (Foeniculum vulgare Miller var. dulce Battandir and Trabut, Apiaceae) and spearmint (Mentha spicata L., Lamiaceae) in Massachusetts. Biol. Agric. Hortic. 7: 363–383.Google Scholar
  29. Morales-Ramos, J. A., Rojas, M. G., and King, E. G. (1996): Significance of adult nutrition and oviposition experience on longevity and attainment of full fecundity of Catolaccus grandis (Hymenoptera: Pteromalidae). Ann. Entomol. Soc. Am. 89: 555–563.Google Scholar
  30. Nealis, V. G. (1986). Responses to host kairomones and foraging behavior of the insect parasite Cotesia rubecula (Hymenoptera: Braconidate). Can. J. Zool. 64: 2393–2398.Google Scholar
  31. Nealis, V. G. (1990). Factors affecting the rate of attack by Cotesia rubecula (Hymenoptera: Braconidate). Ecol. Entomol. 15: 163–168.Google Scholar
  32. Nicholls, C. I., Parrella, M. P., and Altieri, M. A. (2000). Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. Forest Entomol. 2: 107–113.Google Scholar
  33. Patt, J., Hamilton, G., and Lashomb, J. (1999). Responses of two parasitoid wasps to nectar odors as a function of experience. Entomol. Exp. Appl. 90: 1–8.Google Scholar
  34. Patt, J. M., Hamilton, G. C., and Lashomb, J. H. (1997). Foraging success of parasitoid wasps on flowers: Interplay of insect morphology, floral architecture and searching behavior. Entomol. Exp. Appl. 83: 21–30.Google Scholar
  35. Powell, W. 1986. Enhancing parasitoid activity in crops. In Waage, J., and Greathead, D (eds.), Insect Parasitoids, Academic Press, London, pp. 319–340.Google Scholar
  36. Rice, W. R. (1989). Analyzing tables of statistical tests Evolution 43: 223–225.Google Scholar
  37. Rivero, A., and Casas, J. (1999). Incorporating physiology into parasitoid behavioral ecology: The allocation of nutritional resources. Res. Popul. Ecol. 41: 39–45.Google Scholar
  38. SAS Institute (1995). JMPStatistics and Graphics Guide.Version 3.1, SAS Institute, Inc., Cary. NC.Google Scholar
  39. Sengonca, C., and Peters, G. (1993). Biology and effectiveness of Apanteles rubecula Marsh. (Hym., Braconidae), a solitary larval parasitoid of Pieris rapae (L.) (Lep., Pieridae). J. Appl. Entomol. 115: 85–89.Google Scholar
  40. Siekmann, G., Tenhumberg, B., and Keller, M.A. (2001). Feeding and survival in parasitic wasps: Sugar concentration and timing matter. Oikos 95: 425–430.Google Scholar
  41. Sirot, E., and Bernstein, C. (1996). Time sharing between host searching and food searching in parasitoids: State-dependent optimal strategies. Behav. Ecol. 7: 189–194.Google Scholar
  42. Sokal, R. R., and Rohlf, F. J. (1981). Biometry: The Principle and Practice of Statistics in Biological research, W. H. Freeman, San Francisco.Google Scholar
  43. Takasu, K., and Lewis, W. J. (1993). Host and food-foraging of the parasitoid Microplitis croceipes: Learning and physiological state effects. Biol. Control 3: 70–74.Google Scholar
  44. Takasu, K., and Lewis, W. J. (1996). The role of learning in adult food location by the larval parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Insect Behav. 9: 265–281.Google Scholar
  45. Topham, M., and Beardsley, J. W. (1975). Influence of nectar source plants on the New Guinea sugar cane weevil parasite, Lixophaga sphenophori (Villeneuve). Proc. Hawaiian Entomol. Soc. 22: 145–154.Google Scholar
  46. Van Emden, H. F. (1963). Observations on the effect of flowers on the activity of parasitic Hymenoptera. Entomol. Mon. Mag. 98: 265–270.Google Scholar
  47. Waage, J. K. (1978). Arrestment responses of the parasitoid, Nemeritis canescens, to a contact chemical produced by its host Plodia interpunctella. Physiol. Entomol. 3: 135–146.Google Scholar
  48. Wäckers, F. L. (1994). The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J. Insect Physiol. 40: 641–649.Google Scholar
  49. Wäckers, F. L., and Lewis, W. J. (1994). Olfactory and visual learning and their combined influence on host site location by the parasitoid Microplitis croceipes (Cresson). Biol. Control 4: 105–112.Google Scholar
  50. Wäckers, F. L., and Swaans, C. P. M. (1993): Finding floral nectar and honeydew in Cotesia rubecula: Random or directed. In Proceedings of Experimental and Applied Entomology, N.E.V., Amsterdam, Vol. 4, pp. 67–72.Google Scholar
  51. White, P. R. (1989). Factors affecting the antennal and behavioral responses of the saw-toothed grain beetle Oryzaephilus surinamensis to food odor and aggregation pheromone. Physiol. Entomol. 14: 349–359.Google Scholar
  52. Wolcott, G. N. (1942). The requirements of parasites for more than hosts. Science 96: 317–318.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Gitta Siekmann
    • 1
  • Michael A. Keller
    • 1
  • Brigitte Tenhumberg
    • 1
  1. 1.Department of Applied and Molecular EcologyThe University of AdelaideOsmondAustralia

Personalised recommendations