Journal of Insect Behavior

, Volume 17, Issue 2, pp 251–261 | Cite as

Cannibalistic Behavior and Functional Response in Chrysomya albiceps (Diptera: Calliphoridae)

  • Lucas Del Bianco Faria
  • Luzia Aparecida Trinca
  • Wesley Augusto Conde Godoy


Chrysomya albiceps is a facultative predator and cannibal species during the larval stage. Very little is known about cannibalism and prey size preference, especially in blowflies. The purpose of this investigation was to determine the influence of prey size and larval density on cannibalism by third-instar larvae of C. albiceps under laboratory conditions. Our results indicate that no cannibalism occurs by third-instar larvae on first- and second-instar larvae, but third-instar larvae do eat second-instar larvae. The functional response on second-instar larvae is consistent with Holling type II. The consequences of consuming second-, compared to first- or third-, instar larvae as well as the implications of cannibalism for the population dynamics of C. albiceps are discussed.

cannibalism prey development stage foraging theory functional response Chrysomya albiceps Calliphoridae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. (1982). Functional responses of optimal foragers. Am. Nat. 120: 382-390.Google Scholar
  2. Agarwala, B. K., and Dixon, A. F. G. (1992). Laboratory study of cannibalism and interspecific predation in ladybirds. Ecol. Entomol. 17: 303-309.Google Scholar
  3. Bailey, K. H., and Polis, G. A. (1987). An experimental analysis of optimal and central place foraging by the harvester ant, Pogonomyrmex californicus. Oecologia 72: 440-448.Google Scholar
  4. Baumgartner, D. L., and Greenberg, B. (1984). The genus Chrysomya (Diptera: Calliphoridae) in the New World. J. Med. Entomol. 21: 105-113.Google Scholar
  5. Blaustein, L., and Dumont, H. J. (1990). Typhloplanid flatworms (Mesostoma and related genera): Mechanisms of predation and evidence that they structure aquatic invertebrate communities. Hydrobiologia 198: 61-77.Google Scholar
  6. Braack, L. E. O. (1986). Arthropods associated with carcasses in the northern Kruger National Park. S. Afr. J. Wild. Res. 16: 91-98.Google Scholar
  7. Case, T. J. (2000). An Illustraded Guide of Theoretical Ecology. Oxford University Press, New York.Google Scholar
  8. Costantino, R. F., Cushing, J. M., Dennis, B., and Desharnais, R. A. (1995). Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375: 227-230.Google Scholar
  9. Costantino, R. F., Deshamais, R. A., Cushing, J. M., and Dennis, B. (1997). Chaotic dynamics in an insect population. Science 275: 389-391.Google Scholar
  10. Crowley, P., Nisbet, R., Gurney, W., and Lawton, J. (1987). Population regulation in animals with complex life histories: Formulation and analysis of a damself model. Adv. Ecol. Res. 17: 1-59.Google Scholar
  11. Dennis, B., Desharnais, R. A., Cushing, J. M., and Costantino, R. F. (1995). Nonlinear demographic dynamics: Mathematical models, statistical methods and biological experiments. Ecol. Monog. 65: 261-281.Google Scholar
  12. Dong, Q., and Polis, G. A. (1992). The dynamics of cannibalistic populations: A foraging perspective. In Elgar, M. A., and Crespi, B. J. (eds.), Cannibalism, Ecology and Evolution Among Diverse Taxas, Oxford Science, Oxford, pp. 13-38.Google Scholar
  13. Elgar, M. A., and Crespi, B. J. (1992). Ecology and evolution of cannibalism. In Elgar, M. A., and Crespi, B. J. (eds.), Cannibalism, Ecology and Evolution Among Diverse Taxas, Oxford Science, Oxford, pp. 1-13.Google Scholar
  14. Elner, R. W., and Hughes, R. N. (1978). Energy maximization in the diet of the shore crab, Carcinus maenas. J. Anim. Ecol. 47: 103-116.Google Scholar
  15. Faria, L. D. B. (2001). Predação larval e resposta funcional em populações experimentais de Chrysomya albiceps (Diptera: Calliphoridae). Dissertação de Mestrado, UNESP, Botucatu, SP, Brazil.Google Scholar
  16. Faria, L. D. B., and Godoy, W. A. C. (2001). Prey choice by facultative predator larvae of Chrysomya albiceps (Diptera: Calliphoridae). Mem. Inst. Oswaldo Cruz 96: 875-878.Google Scholar
  17. Faria, L. D. B., Orsi, L., Trinca, L. A., and Godoy, W. A. C. (1999). Larval predation by Chrysomya albiceps on Cochliomyia macellaria, Chrysomya megacephala and Chrysomya putoria. Entomol. Exp. Appl. 90: 149-155.Google Scholar
  18. Fincke, O. M. (1994). Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism intraguild predation and habitat drying. Oecologia 100: 118-127.Google Scholar
  19. Folkvord, A., and Hunter, J. R. (1986). Size-specific vulnerability of northern anchovy, Engraulis mordax, larvae to predation by fishes. Fish. Bull. (U.S.) 84: 859-869.Google Scholar
  20. Fox, L. R. (1975). Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6: 87-106.Google Scholar
  21. Giray, T., Luyten, Y., MacPherson, M., and Stevens, L. (2001). Physiological bases of cannibalism and its evolution in the four beetje Tribolium confusum. Evolution 55: 797-806.Google Scholar
  22. Goodbrod, J. R., and Goff, M. L. (1990). Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J. Med. Entomol. 27(3): 338-343.Google Scholar
  23. Gotelli, N. J. (1995). A Primer of Ecology, Sinauer Associates, Sunderland, MA.Google Scholar
  24. Guimarães, J. H., Prado, A. P., and Linhares, A. X. (1978). Three newly introduced blowfly species in southern Brazil (Diptera: Calliphoridae). Rev. Bras. Entomol. 22: 53-60.Google Scholar
  25. Guimarães, J. H., Prado, A. P., and Buralli, G. M. (1979). Dispersal and distribution of three e newly introduced species of Chrysomya Robineau-Desvoidy in Brazil (Diptera, Calliphoridae). Rev. Bras. Entomol. 23: 245-255.Google Scholar
  26. Hassell, M. P. (1978). The Dynamics of Arthropod Predator-Prey Systems, Princeton University Press, Princeton, NJ.Google Scholar
  27. Hastings, A. (1987). Cycles in cannibalistic egg-larval interactions. J. Math. Biol. 24: 651-666.Google Scholar
  28. Hastings, A., and Costantino, R. F. (1987). Cannibalistic egg-larva interactions in Tribolium: An explanation for the oscillations in population numbers. Am. Nat. 120: 36-52.Google Scholar
  29. Hausfater, G., and Hrdy, S. (1984). Infanticide: Comparative and Evolutionary Perspectives, Aldine, New York.Google Scholar
  30. Hildrew, A. G., and Townsend, C. R. (1977). The influence of substrate on the functional response of Plectrocnemia conspersa (Curtis) larvae (Trichoptera: Polycentropodidae). Oecologia 31: 21-26.Google Scholar
  31. Hironori, Y., and Katsuhiro, S. (1997). Cannibalism and interspecific predation in two predatory ladybird in relation to prey abundance in the field. Entomophaga 42: 153-163.Google Scholar
  32. Ho, F. K., and Dawson, P. S. (1966). Egg canibalism by Tribolium larvae. Ecology 47: 318-322.Google Scholar
  33. Holling, C. S. (1959). Some caracteristics of simple types of predation and parasitism. Can. Entomol. 91: 385-398.Google Scholar
  34. Holling, C. S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45.Google Scholar
  35. Hunter, J. R., and Kimbrell, C. A. (1980). Egg cannibalism in the northern anchovy, Engraulis mordax. Fish. Bull. (U.S.) 78: 811-816.Google Scholar
  36. Ives, A. R. (1988). Aggregation and the coexistence of competitors. Ann. Zool. Fenn. 25: 75-88.Google Scholar
  37. Johansson, G. (1992). Effects of zooplankton availability and foraging mode on cannibalism in three dragonfly larvae. Oecologia 91: 179-183.Google Scholar
  38. Kaiser, H. (1983). Small scale spatial heterogeneity influences predation success in an unexpected way: model experiments on the functional response of predatory mites (Acarina). Oecologia 56: 249-256.Google Scholar
  39. Kneidel, K. A. (1984a). Competition and disturbance in communities of carrion breeding diptera. J. Anim. Ecol. 53: 849-865.Google Scholar
  40. Kneidel, K. A. (1984b). The influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am. Mid. Nat. 111: 57-63.Google Scholar
  41. Laurence, B. R. (1986). Old World blowflies in the New World. Parasitol. Today 2: 77-79.Google Scholar
  42. Lawson, J. R., and Gemmell, M. A. (1990). Transmission of taeniid tapeworm eggs via blowflies to intermediate hosts. Parasitology 100: 143-146.Google Scholar
  43. Lipcius, R. N., and Hines, A. H. (1986). Variable function responses of a marine predator in dissimilar homogeneous microhabitats. Ecology 67: 1361-1371.Google Scholar
  44. Murdoch, W. W., and Oaten, A. (1975). Predation and population stability. Adv. Ecol. Res. 9: 2-131.Google Scholar
  45. O'Brien, W., Slade., N., and Vinyard, G. (1976). Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304-1310.Google Scholar
  46. Orr, B. K., Murdoch, W. W., and Bence, J. R. (1990). Population regulation, convergence, and cannibalism in Notonecta (Hemiptera). Ecology 71: 68-82.Google Scholar
  47. Polis, G. A. (1981). The evolution of dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12: 125-251.Google Scholar
  48. Polis, G. A. (1984). Age structure component of niche width and intraspecific resource partitioning by predators: Can age groups function as ecological species? Am. Nat. 123: 541-564.Google Scholar
  49. Prado, A. P., and Guimarães, J. H. (1982). Estado atual de dispersão e distribuição do gênero Chrysomya Robineau-Desvoidy na região Neotropical (Diptera: Calliphoridae). Rev. Bras. Entomol. 26: 225-231.Google Scholar
  50. Putman, R. J. (1983). Carrion and Dung: The Decomposition of Animal Wastes. Studies in Biology Series, Vol. (156), Institute of Biology, London.Google Scholar
  51. Queiroz, M. M. C., Mello, R. P., and Lima, M. M. (1997). Morphological aspects of the larval instars of Chrysomya albiceps (Diptera, Calliphoridae) reare in the laboratory. Mem. Inst. Oswaldo Cruz 92: 187-196.Google Scholar
  52. Roger, C., Coderre, D., and Boivin, G. (2000). Differential prey utilization by generalist predator Coleomegilla maculata lengi according to prey size and species. Entomol. Exp. Appl. 94: 3-13.Google Scholar
  53. SAS Institute (1989). SAS/STAT User's Guide, v. 6, 4th ed., SAS Institute, Cary, NC.Google Scholar
  54. Schausberger, P., and Croft, A. (1999). Predation on and discrimination between cornn-and heterospecific eggs among specialist and generalist Phytoseiid mites (acari: Phytoseiidae). Environ. Entomol. 28: 523-528.Google Scholar
  55. Schoener, T. W. (1969). Models of optimal size for solitary predators. Am. Nat. 103: 277-313.Google Scholar
  56. Schoener, T. W. (1987). A brief history of optimal foraging ecology. In Kamil, A. C., Krebs, J. R., and Pulliam, H. R. (eds.), Foraging Behavior, Plenum, New York, pp. 5-67.Google Scholar
  57. Sherratt, T. N., and Macdougall, A. D. (1995). Some population consequences of variation in preference among individual predators. Biol. J. Linn. Soc. 55: 93-107.Google Scholar
  58. Smith, K. G. V. (1986). A Manual of Forensic Entomology, University Printing House, Oxford.Google Scholar
  59. Sonleitner, F. J., and Guthrie, P. J. (1991). Factors affecting oviposition rate in the flour beetle Tribolium castaneum and the origin of the population regulating mechanism. Res. Pop. Ecol. 33: 1-12.Google Scholar
  60. Spence, J. R., and Carcamo, H. A. (1991). Effects of cannibalism and intraguild predation on pondskaters (Gerridae). Oikos 62: 333-341.Google Scholar
  61. Stevens, L. (1992). Cannibalism in beetles. In Elgar, M. A., and Crespi, B. J. (eds.), Cannibalism, Ecology and Evolution Among Diverse Taxa, Oxford Science, Oxford, pp. 156-175.Google Scholar
  62. Suchman, C. L., and Sullivan, B. K. (2000). Effect of prey size on vulnerability of copepods to predation by the scyphomedusae Aurelia aurita and Cyanea sp. J. Plank. Res. 22: 2289-2306.Google Scholar
  63. Tschinkel, W. R. (1993). Resource allocation, brood production and cannibalism during colony founding in the fire ant, Solenopsis invicta. Behav. Ecol. Soc. 33: 209-233.Google Scholar
  64. Ullyett, G. C. (1950). Competition for food and allied phenomena in sheep-blowfly populations. Phil. Trans. Roy. Soc. Lond. B234: 77-174.Google Scholar
  65. Wells, J. D. (1991). Chrysomya megacephala (Diptera: Calliphoridae) has reached the continental United States: Review of its biology, pest status, and spread around the world. J. Med. Entomol. 28: 471-473.Google Scholar
  66. Wells, J. D., and Greenberg, B. (1992). Rates of predation by Chrysomya rufifacies (Macquart) on Cochliomyia macellaria (Fabr.) (Diptera: Calliphoridae) in the laboratory: Effect of predator and prey development. Pan-Pac. Entomol. 68: 12-14.Google Scholar
  67. Wells, J. D., and Kurahashi, H. (1997). Chrysomya megacephala (Fabr.) is more resistant to attack by Chrysiomya rufifacies (Marcquart) in laboratory arena than is Cochliomyia macellaria (Fabr.) (Diptera: Calliphoridae). Pan-Pac. Entomol. 73: 16-20.Google Scholar
  68. Zar, J. H. (1999). Biostatistical Analysis, 4th ed., Prentice Hall, Upper Saddle River, NJ.Google Scholar
  69. Zumpt, F. (1965). Myiasis in Man and Animals in the Old World, Butterworths, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Lucas Del Bianco Faria
    • 1
  • Luzia Aparecida Trinca
    • 2
  • Wesley Augusto Conde Godoy
    • 1
  1. 1.Departamento de ParasitologiaIB, Universidade Estadual Paulista, Rubião Jr.BotucatuBrazil
  2. 2.Departamento de BioestatísticaIB, Universidade Estadual Paulista, Rubião Jr.BotucatuBrazil

Personalised recommendations