Journal of Insect Behavior

, Volume 17, Issue 2, pp 201–213 | Cite as

Associative Learning of Color by Males of the Parasitoid Wasp Nasonia vitripennis (Hymenoptera: Pteromalidae)



Males of the parasitoid wasp Nasonia vitripennis showed no innate preference for blue versus yellow or for green versus brown. They learned to associate color with mates, but their ability to do so depended on the color used and the strength of the reward. Specifically, males learned to associate brown or green with a reward of many virgin females. With fewer females, fewer training periods, or mated females as the reward, males still learned a preference for green but not for brown. Males did not learn to associate color with rewards of honey or water. Previous studies of color preference and associative learning in parasitoid wasps have focused almost entirely on females. This is the first demonstration of associative learning in response to visual cues by male parasitoid wasps.

associative learning color parasitoid wasp Pteromalidae Nasonia mating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, A. P. (1966). Associative learning in Itoplectis conquisitor (Hymenoptera: Ichneumonidae). Can. Entomol. 98: 213-221.Google Scholar
  2. Baeder, J. M. (2002). Associative learning in male Nasonia vitripennis, a parasitoid wasp (Hymenoptera: Pteromalidae). Thesis, DeKalb, Northern Illinois University.Google Scholar
  3. Barrass, R. (1961). A quantitative study of the behaviour of the male Mormoniella vitripennis (Walker) (Hymenoptera, Pteromalidae) towards two constant stimulus-situations. Behaviour 18: 288-312.Google Scholar
  4. Battaglia, D., Poppy, G., Powell, W., Romano, A., Tranfaglia, A., and Pennacchio, F. (2000). Physical and chemical cues influencing the oviposition behaviour of Aphidius ervi. Entomol. Exp. Appl. 94: 219-227.Google Scholar
  5. Bernays, E. A. (1993). Aversion learning and feeding. In Papaj, D. R., and Lewis A. C. (eds.), Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 1-17.Google Scholar
  6. Bratzke, B. (2001). Mating effects on behavior in two parasitoid wasps. Thesis, DeKalb, Northern Illinois University.Google Scholar
  7. Brown, P. E., Frank, C. P., Groves, H. L., and Anderson, M. (1998). Spectral sensitivity and visual conditioning in the parasitoid wasp Trybliographa rapae (Hymenoptera, Cynipidae). Bull. Entomol. Res. 88: 239-245.Google Scholar
  8. Davies, I. (1974). The effect of age and diet on the ultrastructure of hymenopteran flight muscle. Exp. Geron. 9: 215-219.Google Scholar
  9. Drapeau, M. D., and Werren, J. H. (1999). Differences in mating behaviour and sex ratio between three sibling species of Nasonia. Evol. Ecol. Res. 1: 223-234.Google Scholar
  10. Dukas, R., and Duan, J. J. (2000). Potential fitness consequences of associative learning in a parasitoid wasp. Behav. Ecol. 11: 536-543.Google Scholar
  11. Edwards, R. L. (1954). The effect of diet on egg maturation and resorption in Mormoniella vitripennis (Hymenoptera: Pteromalidae). Q. J. Microsc. Sci. 95: 459-468.Google Scholar
  12. Fukushi, T. (1976). Classical conditioning to visual stimuli of the house fly, Musca domestica. J. Comp. Physiol. 22: 361-364.Google Scholar
  13. Fukushi, T. (1989). Learning and discrimination of colored papers in the walking blowfly, Lucilia cuprina. J. Comp. Physiol. 166: 57-64.Google Scholar
  14. Godfray, H. C. J. (1994). Parasitoids, Princeton University Press, Princeton, NJ.Google Scholar
  15. Gould, J. (1993). Ethological and comparative perspectives on honey bee learning. In Papaj, D. R., and Lewis A. C. (eds.), Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 18-50.Google Scholar
  16. Hofstetter, R. W., and Raffa, K. F. (1998). Endogenous and exogenous factors affecting parasitism of gypsy moth egg masses by Ooencyrtus kuvanae. Entomol. Exp. Appl. 88: 123-135.Google Scholar
  17. Hosken, D. J., and Blanckenhorn, W. U. (1999). Female multiple mating, inbreeding avoidance, and fitness: It is not only the magnitude of the costs and benefits that counts. Behav. Ecol. 4: 462-464.Google Scholar
  18. Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., and Dawah, H. A. (1993). Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 27: 67-105.Google Scholar
  19. King, B. (1993). Flight activity in the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). J. Insect Behav. 6: 313-321.Google Scholar
  20. Matsumoto, Y., and Mizunami, M. (2002). Temporal determinants of long-term retention of olfactory memory in the cricket Gryllus bimaculatus. J. Exp. Biol. 205: 1429-1437.Google Scholar
  21. Menzel, R. (1985). Learning in honey bees in a ecological and behavioral context. In Holldobler, B., and Lindauer, M. (eds.), Experimental Behavioral Ecology and Sociobiology, Fisher, Stuttgart, New York, pp. 55-74.Google Scholar
  22. Morgan, D. J. W., and Hare, J. D. (1998). Volatile cues used by the parasitoid, Aphytis melinus, for host location: California red scale revisited. Entomol. Exp. Appl. 88: 235-245.Google Scholar
  23. Oliai, S. E., and King, B. H. (2000). Associative learning in response to color in the parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). J. Insect Behav. 13: 55-69.Google Scholar
  24. Phelan, L. L., Rodd, Z. A., Byers, D., and Roselini, R. A. (1998). Odor passive avoidance learning in individual Drosophila melanogaster: Parametric investigations of unconditioned stimulus intensity and inter-trial-interval. Learn. Motiv. 29: 83-101.Google Scholar
  25. Rueda, L. M., and Axtell, R. C. (1985). Guide to common species of pupal parasites (Hymenoptera: Pteromalidae) of the house fly and other muscoid flies associated with poultry and livestock manure. Technical Bulletin 278. North Carolina Agricultural Research Service, North Carolina State University.Google Scholar
  26. Sato, M., and Takasu, K. (2000). Food odor learning by both sexes of the pupal parasitoid Pimpla alboannulatus Uchida (Hymenoptera: Ichneumonidae). J Insect Behav. 13: 263-272.Google Scholar
  27. Schmidt, J. M., Carde, R. T., and Vet, E. M. (1993). Host recognition by Pimpla instigator F. (Hymenoptera: Ichneumonidae): Preferences and learned responses. J. Insect Behav. 6: 1-11.Google Scholar
  28. Shafir, S. (1996). Color discrimination conditioning of a wasp, Polybia occidentalis (Hymenoptera: Vespidae). Biotropica 28: 243-251.Google Scholar
  29. SPSS (1999). SPSS for Windows, release 10.0.0. SPSS, Inc. Chicago, IL.Google Scholar
  30. Takasu, K., and Lewis, W. J. (1996). The role of learning in adult food location by the larval parasitoid, Microplitis croceipes (Hymenoptera: Braconidae). J. Insect Behav. 9: 265-281.Google Scholar
  31. Turlings, T. C., Wäckers, F., Vet, E. M. L., Lewis, W. J., and Tumlinson, J. H. (1993). Learning of host-finding cues by hymenopterous parasitoids. In Papaj, D. R., and Lewis, A. C. (eds.), Insect Learning: Ecological and Evolutionary Perspectives, Chapman and Hall, New York, pp. 51-78.Google Scholar
  32. Vanbaarlen, P., Topping, C. J., and Sunderland K. D. (1996). Host location by Gelis festinans, an egg parasitoid of the Linyphiid spider Erigone atra. Entomol. Exp. Appl. 81: 155-163.Google Scholar
  33. van den Assem, J., and Werren, J. H. (1994). A comparison of the courtship and mating behavior of three species of Nasonia (Hymenoptera: Pteromalidae). J. Insect Behav. 7: 53-66.Google Scholar
  34. Wäckers, F. L. (1994). The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J. Insect Physiol. 40: 641-649.Google Scholar
  35. Wäckers, F. L., and Lewis, W. J. (1994). Olfactory and visual learning and their combined influence on host site location by the parasitoid Microplitis croceipes (Cresson). Biol. Control 4: 105-112.Google Scholar
  36. Wäckers, F. L., and Lewis, W. J. (1999). A comparison of color-, shape-and pattern-learning by the hymenopteran parasitoid Microplitis croceipes (Cresson). J. Comp. Physiol. A 184: 387-393.Google Scholar
  37. Wardle, A. R. (1990). Learning of host microhabitat colour by Exercistes roborator (F) (Hymenoptera: Ichneumonidae). Anim. Behav. 39: 914-923.Google Scholar
  38. Weiss, M. (1997). Innate color preferences and flexible color learning in the pipevine swallowtail. Anim. Behav. 53: 1043-1052.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Biological SciencesNorthern Illinois UniversityDeKalb

Personalised recommendations