Journal of Insect Behavior

, Volume 17, Issue 1, pp 129–144

Variable Female Mating Positions and Offspring Sex Ratio in the Spider Pityohyphantes phrygianus (Araneae: Linyphiidae)



Chromosomal sex determination and male heterogamety have been thought to seriously impede direct sex ratio control. However, in Pityohyphantes phrygianus, a solitary sheetweb spider with a skewed sex ratio, earlier experimental studies suggested that there are options for female control of offspring sex ratio, if females change their position during the normal mating sequence. Here we show that under natural conditions there is considerable between-female variation in positions, especially after termination of mating. Computer simulations of the orientation of female inner genitalia suggest that sperm are placed in different storage sites depending on the positions adopted. This means that a specific position after mating might potentially influence offspring sex ratio. The variance in offspring sex ratio among females in earlier experiments was binomially distributed, which leads us to conclude that females control the mean sex ratio but do not exercise direct control of the sex of individual offspring.

copulation female control mating behaviour sex ratio spiders 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austad, S. N. (1982). First male sperm priority in the bowl and doily spider, Frontinella pyramitela (Walckenaer). Evolution 36: 777-785.Google Scholar
  2. Avilés, L. (1986). Sex-ratio bias and possible group selection in the social spider Anelosimus eximius. Am. Nat. 128: 1-12.Google Scholar
  3. Avilés, L. (1997). Causes and consequences of cooperation and permanent-sociality in spiders. in Choe, J. C., and Crespi, B. J. (eds.), The Evolution of Social Behavior in Insects and Arachnids, Cambridge University Press, Cambridge, pp. 476-498.Google Scholar
  4. Avilés, L., and Maddison, W. (1991). When is the sex ratio biased in social spiders? Chromosome studies of embryos and male meiosis in Anelosimus species (Araneae, Theridiidae). J. Arachnol. 19: 126-135.Google Scholar
  5. Avilés, L., Varas, C., and Dyreson, E. (1999). Does the African social spider Stegodyphus dumicola control the sex of individual offspring? Behav. Ecol. Sociobiol. 46: 237-243.Google Scholar
  6. Avilés, L., McCormack, J., Cutter, A., and Bukowski, T. (2000). Precise, highly female-biased sex ratios in a social spider. Proc. Roy. Soc. Lond. Ser. B 267: 1445-1449.Google Scholar
  7. Birkhead, T. R. (1998). Cryptic female choice: Criteria for establishing female sperm choice. Evolution 52: 1212-1218.Google Scholar
  8. Birkhead, T. R., and Møller, A. P. (1998). Sperm competition, sexual selection and different routes to fitness. in Birkhead, T. R., and Møller, A. P. (eds.), Sperm Competition and Sexual Selection, Academic Press, San Diego, pp. 757-781.Google Scholar
  9. Bukowski, T. C., and Christenson, T. E. (2000). Determinants of mating frequency in the spiny orbweaving spider, Micrathena gracilis (Araneae: Araneidae). J. Insect Behav. 13: 331-352.Google Scholar
  10. Dobzhansky, T., Ayala, F. J., Ledyard Stebbins, G., and Valentine, J. W. (1977). Evolution, W. H. Freeman, San Francisco.Google Scholar
  11. Eberhard, W. G. (1985). Sexual Selection and Animal Genitalia, Harvard University Press, Cambridge, MA.Google Scholar
  12. Eberhard, W. G. (1996). Female Control: Sexual Selection by Cryptic Female Choice, Princeton University Press, Princeton, NJ.Google Scholar
  13. Eberhard, W. G. (1998). Female roles in sperm competition. in Birkhead, T. R., and Møller, A. P. (eds.). Sperm Competition and Sexual Selection, Academic Press, San Diego, pp. 91-116.Google Scholar
  14. Efron, B., and Tibshirani, R.-J. (1993). An Introduction to the Bootstrap, Chapman and Hall, New York.Google Scholar
  15. Elgar, M. A., and Godfray, H. C. J. (1987). Sociality and sex ratios in spiders. Trends Ecol. Evol. 2: 6-7.Google Scholar
  16. Fisher, N. I. (1993). Statistical Analysis of Circular Data, Cambridge University Press, Cambridge.Google Scholar
  17. Foelix, R. (1996). Biology of Spiders, 2nd ed., Oxford University Press, Oxford.Google Scholar
  18. Gunnarsson, B. (1987). Sex ratio in the spider Pityohyphantes phrygianus affected by winter severity. J. Zool. Lond. 213: 609-619.Google Scholar
  19. Gunnarsson, B. (1989). Local adjustment of sex ratio in the spider Pityohyphantes phrygianus. J. Zool. Lond. 217: 1-7.Google Scholar
  20. Gunnarsson, B., and Andersson, A. (1992). Skewed primary sex ratio in the solitary spider Pityohyphantes phrygianus. Evolution 46: 841-845.Google Scholar
  21. Gunnarsson, B., and Andersson, A. (1996). Sex ratio variation in sheet-web spiders: Options for female control? Proc. Roy. Soc. Lond. Ser. B 263: 1177-1182.Google Scholar
  22. Heinsohn, R., Legge, S., and Barry, S. (1997). Extreme bias in sex allocation in Eclectus parrots. Proc. Roy. Soc. Lond. Ser. B 264: 1325-1329.Google Scholar
  23. Hellriegel, B., and Bernasconi, G. (2000). Female-mediated differential sperm storage in a fly with complex spermathecae, Scatophaga stercoraria. Anim. Behav. 59: 311-317.Google Scholar
  24. Hurst, L. D., and Vollrath, F. (1992). Sex-ratio adjustment in solitary and social spiders. Trends Ecol. Evol. 7: 326-327.Google Scholar
  25. Komdeur, J. (1998). Long-term benefits of egg sex modification by the Seychelles warbler. Ecol. Lett. 1: 56-62.Google Scholar
  26. Komdeur, J., Daan, S., Tinbergen, J., and Mateman, C. (1997). Extreme adaptive modification in sex ratio of the Seychelles warbler's eggs. Nature 385: 522-525.Google Scholar
  27. Krackow, S. (1995). Potential mechanisms for sex ratio adjustment in mammals and birds. Biol. Rev. 70: 225-241.Google Scholar
  28. Maddison, W. P. (1982). XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae). Chromosoma 85: 23-37.Google Scholar
  29. McLain, D. K., and Marsh, N. B. (1990). Individual sex ratio adjustment in response to the operational sex ratio in the southern green stinkbug. Evolution 44: 1018-1025.Google Scholar
  30. MetaCreations (1999). Carrara v. 1.0, MetaCreation, Dublin.Google Scholar
  31. Rowell, D. M., and Main, B. Y. (1992). Sex ratio in the social spider Diaea socialis (Araneae: Thomisidae). J. Arachnol. 20: 200-206.Google Scholar
  32. SAS (1998). StatView Reference, SAS Institute, Cary, NC.Google Scholar
  33. Sheldon, B. C., Andersson, S., Griffith, S. C., Örnborg, J., and Sendecka, J. (1999). Ultraviolet colour variation influences blue tit sex ratios. Nature 402: 368-371.Google Scholar
  34. Siegel, S., and Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences, 2nd ed., McGraw–Hill, New York.Google Scholar
  35. Stålhandske, P., and Gunnarsson, B. (1996). Courtship behaviour in the spider Pityohyphantes phrygianus (Linyphiidae, Araneae): Do females discriminate injured males? Rev. Suisse Zool. Vol. hors serie: 617-625.Google Scholar
  36. Suter, R. B. (1990). Courtship and assessment of virginity by male bowl and doily spiders. Anim. Behav. 39: 307-313.Google Scholar
  37. Suzuki, S. (1954). Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. J. Sci. Hirosh. Univ. Ser. B Div. I (Zool.) 15: 23-166.Google Scholar
  38. Svensson, E., and Nilsson, J. (1996). Mate quality affects offspring sex ratio in blue tits. Proc. Roy. Soc. Lond. Ser. B 263: 357-361.Google Scholar
  39. Uhl, G., and Gunnarsson, B. (2001). Female genitalia in Pityohyphantes phrygianus, a spider with skewed sex ratio. J. Zool. Lond. 255: 367-376.Google Scholar
  40. van Helsdingen, P. J. (1965). Sexual behaviour of Lepthyphantes leprosus (Ohlert) (Araneida, Linyphiidae) with notes on the function of the genital organs. Zool. Mededelingen Leiden 41: 15-42.Google Scholar
  41. Vollrath, F. (1986). Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: Theridiidae). Behav. Ecol. Sociobiol. 18: 283-287.Google Scholar
  42. White, M. J. D. (1973). Animal Cytology and Evolution, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of ZoologyGöteborg UniversitySweden
  2. 2.Department of Applied Environmental ScienceGöteborg UniversitySweden
  3. 3.Institute of Zoology, Department of NeuroethologyUniversity of BonnBonnGermany

Personalised recommendations