Advertisement

Journal of Insect Behavior

, Volume 16, Issue 6, pp 811–831 | Cite as

Decreased Response to Feeding Deterrents Following Prolonged Exposure in the Larvae of a Generalist Herbivore, Trichoplusia ni (Lepidoptera: Noctuidae)

  • Yasmin Akhtar
  • Catharine H. Rankin
  • Murray B. Isman
Article

Abstract

We investigated the role of experience with several antifeedants on the feeding behavior of a generalist herbivore, Trichoplusia ni. Second-, third-, and fifth-instar larvae of T. ni were examined for their feeding responses to plant extracts (Melia volkensii, Origanum vulgare) and individual plant allelochemicals (cymarin, digitoxin, xanthotoxin, toosendanin, and thymol), after being exposed to them continually beginning as neonates. All tested instars of T. ni were capable of showing a decreased antifeedant response following prolonged exposure to most of the antifeedants tested compared with their naive conspecifics. Cardenolides (digitoxin and cymarin) were the exceptions. The response to oregano was affected as a result of previous exposure to different concentrations of oregano, unlike M. volkensii, leading us to conclude that T. ni sensitivity varies between stimuli and cannot be generalized. To demonstrate that decreased deterrence following prolonged exposure to M. volkensii was the result of learned habituation, three aversive stimuli were used. A high concentration of the particular antifeedant, xanthotoxin, acted as a noxious stimulus and dishabituated (reversed) the decrement in the antifeedant response to M. volkensii. Cold shock or CO2 was marginally effective in dishabituating the response. The fact that the decrease in antifeedant response can be dishabituated has implications for pest management.

Trichoplusia ni antifeedants Melia volkensii Origanum vulgare pure compounds habituation dishabituation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Berdegue, M., White, K. K., and Trumble, J. T. (1997). Feeding deterrence of Spodoptera ex-igua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocoumarins. Environ. Entomol. 26: 912–919.Google Scholar
  2. Berenbaum, M. R., Nitao, J. K., and Zangeri, A. R. (1991) Adaptive variation in the fura-nocoumarin composition of Pastinaca sativa (Apiaceae). J. Chem. Ecol. 17: 207–215.Google Scholar
  3. Bernays, E. A. (1983). Antifeedants in crop pest management. In Whitehead, D. L., and Bowers, W. S. (eds.), Natural Products for Innovative Pest Management, Pergamon Press, Oxford, pp. 259–271.Google Scholar
  4. Bernays, E. A., and Chapman, R. F. (1978). Plant chemistry and acridoid feeding behavior. In Harborne, J. B. (ed.), Coevolution of Plants and Animals, Academic Press, London, pp. 99–141.Google Scholar
  5. Bernays, E. A., and Chapman, R. F. (1994). Host Plant Selection by Phytophagous Insects, Chapman and Hall, New York, pp. 206–229.Google Scholar
  6. Bernays, E. A., and Chapman, R. F. (2000). Plant secondary compounds and grasshoppers: Beyond plant defenses. J. Chem. Ecol. 26: 1773–1794.Google Scholar
  7. Bernays, E. A., and Weiss, M. R. (1996). Induced food preferences in caterpillars: the need to identify mechanism. Entomol. Exp. Appl. 78: 1–8.Google Scholar
  8. Blaney, W. M., Schoonoven, L. M., and Simmonds, M. S. J. (1986). Sensitivity variations in insect chemoreceptors; A review. Experentia 42: 13–19.Google Scholar
  9. Bomford, M. K., and Isman, M. B. (1996). Desensitization of fifth instar Spodoptera litura to azadirachtin and neem. Entomol. Exp. Appl. 81: 307–313.Google Scholar
  10. Carew, T. J., and Sahley, C. L. (1986). Invertebrate learning and memory: From behavior to molecules. Annu. Rev. Neurosci. 9: 435–487.Google Scholar
  11. Chen, W., Isman, M. B., and Chiu, S. F. (1995). Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia. J. Appl. Entomol. 119: 367–370.Google Scholar
  12. Chiu, S. F. (1984). The active principles and insecticidal properties of some Chinese plants with special reference to Meliaceae. In Schmutterer, H., and Ascher, K. R. S. (eds.), Natural Pesticides from the Neem Tree and Other Tropical Plants, Proc. 2nd Int. Neem Conf., Schrift der GTZ 161: 255–262.Google Scholar
  13. Chiu, S. F. (1985). Experiments on the application of toosendanin, a natural product form Melia toosendan for the control of the cabbageworm (Pieris rapae L.). Acta Phytophylact. Sin. 12: 125–132.Google Scholar
  14. Chiu, S. F. (1989). Recent advances in research on botanical insecticides in China. In Aranson, B. J. R. Philogene and Morand, P. (eds.), Insecticides of Plant Origin, Am. Chem. Soc. Symp. Ser. 387, pp. 69–77.Google Scholar
  15. Dethier, V. G. (1982). Mechanisms of host-plant recognition. Entomol. Exp. Appl. 31: 49–56.Google Scholar
  16. Dimock, M. B., Renwick, J. A. A., Radke, C. D., and Sachdev-Gupta, K. (1991). Chemical constituents of an unacceptable crucifer, Erysimum cheiranthoides, deter feeding by Pieris rapae. J. Chem. Ecol. 17: 525–533.Google Scholar
  17. Gill, J. S. (1972). Studies on Insect Feeding Deterrents with Special Reference to Fruit Extracts of the Neem Tree, Azadirachta indica A. Juss. Ph.D. thesis, University of London, London.Google Scholar
  18. Huang, X. P., and Renwick, J. A. A. (1994). Cardenolides as oviposition deterrents to two Pieris species: Structure-activity relationships. J. Chem. Ecol. 20: 1039–1051.Google Scholar
  19. Huang, X. P., and Renwick, J. A. A. (1995). Cross habituation to feeding deterrents and acceptance of a marginal host plant by Pieris rapae larvae. Entomol. Exp. Appl. 76: 295–302.Google Scholar
  20. Hummelbrunner, L. A., and Isman, M. B. (2001). Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura. J. Agr. Food Chem. 49(2): 715–720.Google Scholar
  21. Isman, M. B. (2002). Insect antifeedants. Pestic. Outlook 13: 129–176.Google Scholar
  22. Isman, M. B., Koul, O., Luczynski, A., and Kaminski, A. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agr. Food Chem. 38: 1406–1411.Google Scholar
  23. Isman, M. B., Wan, A. J., and Passreiter, C. (2001). Insecticidal activities of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia 72: 65–68.Google Scholar
  24. Jermy, T. (1966). Feeding inhibitors and food preference in chewing phytophagous insects. Entomol. Exp. Appl. 9: 1–12.Google Scholar
  25. Jermy, T. (1987). The role of experience in the host selection of phytophagous insects. In Chapman, R. F., Bernays, E. A., and Stoffolano, J. G. (eds.), Perspectives in Chemoreception and Behavior, Springer-Verlag, New York, pp. 143–157.Google Scholar
  26. Jermy, T., Bernays, E. A., and Szentesi, A. (1982). The effect of repeated exposure to feeding deterrents on their acceptability to phytophagous insects. In Visser, J. H., and Minks, A. K. (eds.), Proceedings, 5th International Symposium Insect-Plant Relationships, Waginengen, PU DOC, Waningen, pp. 25–32.Google Scholar
  27. Karpouhtsis, I., Pardali, E., Feggou, E., Kokkini, S., Scouras, Z. G., and Mavragan-Tsipidou, P. (1998). Insecticidal and genotoxic activities of oregano essential oils. J. Agr. Food Chem. 46: 1111–1115.Google Scholar
  28. Ma, W. C. (1972). Dynamics of feeding responses in Pieris brassicae Linn. as a function of chemosensory input: A behavioral, ultrastructural, and physiological study. Meded. Land-bouwhogesch. Wageningen 72: 1–162.Google Scholar
  29. Miller, J. R., and Strickler, K. L. (1984). Finding and accepting host plants. In Bell, W., and Carde, R. (eds.), Chemical Ecology of Insects, Chapman and Hall, London, pp. 127–155.Google Scholar
  30. Mitchell, B. K., and Sutcliffe, J. F. (1984). Sensory inhibition as a mechanism of feeding deterrence: Effects of three alkaloids on leaf beetle feeding. Physiol. Entomol. 9: 57–64.Google Scholar
  31. Mwangi, R. W. (1982). Locust antifeedant activity in fruits of Melia volkensii. Entomol. Exp. Appl. 32: 277–280.Google Scholar
  32. Mwangi, R. W., and Rembold, H. (1987). Growth regulating activity of Melia volkensii extracts against the larvae of Aedes aegypti. In Schmutterer, H., and Ascher, K. R. S. (eds.), Proc. 3rd Int. Neem Conf., Schrift der GTZ, Vol. 206, pp. 669–681.Google Scholar
  33. Mwangi, R. W., and Rembold, H. (1988). Growth inhibiting and larvicidal effects of Melia volkensii extracts on Aedes aegypti larvae. Entomol. Exp. Appl. 46: 103–108.Google Scholar
  34. Raffa, K. F., and Frazier, J. L. (1988). Ageneral model for quantifying behavioral desensitization to antifeedants. Entomol. Exp. Appl. 46: 93–100.Google Scholar
  35. Renwick, J. A. A., Radke, C. D., and Sachdev-Gupta, K. (1989). Chemical constituents of Erysimum cheiranthoides: Deterring oviposition by the cabbage butterfly, Pieris rapae. J. Chem. Ecol. 15: 2161–2169.Google Scholar
  36. Sachdev-Gupta, K., Radke, C. D., and Renwick, J. A. A. (1993a). Antifeedant activity of cucurbitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry 33: 1385–1388.Google Scholar
  37. Sachdev-Gupta, K., Radke, C. D., Renwick, J. A. A., and Dimmock, M. B. (1993b). Cardenolides from Erysimum cheiranthoides: Feeding deterrents to Pieris rapae larvae. J. Chem. Ecol. 19: 1355–1369.Google Scholar
  38. Schoonhoven, L. M. (1977). On the individuality of insect feeding behavior. Proc. Kon. Ned. Akad. Wtsch. C 72: 491–498.Google Scholar
  39. Schoonhoven, L. M. (1982). Biological aspects of antifeedants. Entomol. Exp. Appl. 31: 57–69.Google Scholar
  40. Schoonhoven, L. M. (1987). What makes a caterpillar eat? The sensory code underlying feedin behavior. In Chapman, R. F., Bernays, E. A., and Stoffolano, J. G. (eds.), Perspectives in Chemoreception and Behavior, Springer-Verlag, New York, pp. 69–97.Google Scholar
  41. Simmonds, M. S. J., and Blaney, W. M. (1984). Some neurophysiological effects of azadirachtin on lepidopterous larvae and their feeding responses. In Schmutterrer, H., and Ascher, K. R. S. (eds.), Natural Pesticides from the Neem Tree (Azadirachta indica A. Juss) and Other Tropical Plants, Proc. 2nd Int. Neem Conf. Schrift der GTZ 161: 163–180.Google Scholar
  42. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T., and Arsenakis, M. (1996). Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agr. Food Chem. 44: 1202–1205.Google Scholar
  43. Statistix 7 (2000). Analytical Software, Statistix 7 for Windows 95, 98, NT, 2000, Analytical Software, Tallahassee, FL.Google Scholar
  44. Szentesi, A., and Bernays, E. A. (1984). Astudy of behavioral habituation to a feeding deterrent in nymphs of Schistocerca gregaria. Physiol. Entomol. 9: 329–340.Google Scholar
  45. Szentesi, A., and Jermy, T. (1989). The role of experience in host plant choice by phytophagous insects. In Bernays, E. A. (ed.), Insect-Plant Interactions, Vol. 2, CRC Press, Boca Raton, FL pp. 39–74.Google Scholar
  46. Thompson, D. P. (1989). Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81: 151–153.Google Scholar
  47. Thompson, R. F., and Spencer, W. F. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73: 16–43.Google Scholar
  48. Usher, B. F., Bernays, E. F., and Barbehenn, R. V. (1988). Antifeedant tests with larvae of Pseudaletia unipuncta: Variability of behavioral response. Entomol. Exp. Appl. 48: 203–212Google Scholar
  49. Yajima, T., and Munakata, K. (1979). Phloroglucinol type furanocoumarins, a group of potent naturally-occurring insect antifeedants. Agr. Biol. Chem. 43: 1701–1706.Google Scholar
  50. Zar, J. H. (1984). Biostatistical Analysis, Prentice–Hall, Englewood Cliffs, NJ, pp. 168–190.Google Scholar
  51. Zhang, X., and Chiu, S.-F. (1983). The antifeeding and repellent effects of meliaceous plants to some insect pests. J. South China Agr. Univ. 4: 1–7.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Yasmin Akhtar
    • 1
  • Catharine H. Rankin
    • 2
  • Murray B. Isman
    • 1
  1. 1.Faculty of Agricultural SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of PsychologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations