Journal of Insect Behavior

, Volume 16, Issue 6, pp 797–809 | Cite as

Remating Behavior of Cnephasia jactatana Walker Females (Lepidoptera: Tortricidae)

  • Alfredo Jiménez-Pérez
  • Qiao Wang
  • Ngaire Markwick
Article

Abstract

Cnephasia jactatana Walker is an important pest of kiwifruit in New Zealand. We investigated, under laboratory conditions, the effects of multiple mating on the reproductive performance of C. jactatana females and how such effects varied with male virginity and larval nutrition. We found that in permanent pairs, remating increased female fecundity and fertility but suboptimally fed females benefited more from remating. Regardless of this benefit, mass-reared pairs had a lower remating frequency. Females remating with a virgin male or a male that had delivered a spermatophore presented similar fecundity and fertility; however, females receiving a second ejaculate from a virgin male had increased daily fecundity. Female weight clearly affected remating behavior since those that received a second ejaculate were significantly heavier. Neither mating length nor size of the first spermatophore influenced female remating. Further, mass-reared and individually reared males produced spermatophores of similar size.

remating behavior larval nutrition fertility fecundity virginity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnqvist, G., and Nilsson, T. (2000). The evolution of polyandry: multiple mating and female fitness in insects. Anim. Behav. 60: 145-164.Google Scholar
  2. Baker, R. H., Ashwell, R. I. S., Richards, T. A., Fowler, K., Chapman, T., and Pomiankowski, A. (2001). Effects of multiple mating and male eye span on female reproductive output in the stalk-eyed fly, Cyrtodiopsis dalmanni. Behav. Ecol. 12: 732-739.Google Scholar
  3. Bergström, J., and Wiklund, C. (2002). Effects of size and nuptial gifts on butterfly reproduction: Can females compensate for a smaller size through male-derived nutrients? Behav. Ecol. Sociobiol. 52: 296-302.Google Scholar
  4. Bergström, J., Wiklund, C., and Kaitala, A. (2002). Natural variation in female mating frequency in a polyandrous butterfly: effects of size and age. Anim. Behav. 64: 49-54.Google Scholar
  5. Bissoondath, C. J., and Wiklund, C. (1996). Effect of male mating history and body size on ejaculate size and quality in two polyandrous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Funct. Ecol. 10: 457-464.Google Scholar
  6. Boggs, C. L. (1990). A general model of the role of male-donated nutrients in females insects' reproduction. Am. Nat. 136: 598-617.Google Scholar
  7. Cook, P. A. (1999). Sperm numbers and female fertility in the moth Plodia interpunctella (Hubner) (Lepidoptera; Pyralidae). J. Insect. Behav. 12: 767-779.Google Scholar
  8. Delisle, J., and Bouchard, A. (1995). Male larval nutrition in Choristoneura rosaceana (Lepidoptera: Tortricidae): An important factor in reproductive success. Oecologia 104: 508-517.Google Scholar
  9. Dongen, van, S., Sprengers, E., Lofstedt, C. and Matthysen, E. (1999). Fitness components of male and female winter moths (Operophtera brumata L.) (Lepidoptera, Geometridae) relative to measures of body size and asymmetry. Behav. Ecol. 10: 659-665.Google Scholar
  10. Drummond B. A. (1984). Multiple mating and sperm competition in the Lepidoptera. In: Smith, R. L. (ed.), Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, Orlando, FL, pp. 291-371.Google Scholar
  11. Edvardsson, M., and Arnqvist, G. (2000). Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc. R. Soc. London B 267: 559-563.Google Scholar
  12. Fadamiro, H. Y., and Baker, T. C. (1999). Reproductive performance and longevity of female european corn borer, Ostrinia nubilalis: Effects of multiple mating, delay in mating, and adult feeding. J. Insect Physiol. 45: 385-392.Google Scholar
  13. Freedman, D., Pisani, R., and Purves, R. (1998). Statistics, 3rd ed., W. W. Norton, New York.Google Scholar
  14. Gage, M. J. G., and Cook, P. A. (1994). Sperm size or numbers—Effects of nutritional stress upon eupyrene and apyrene sperm production strategies in the moth Plodia-interpunctella (Lepidoptera, Pyralidae). Funct. Ecol. 8: 594-599.Google Scholar
  15. Giebultowicz, J. M., and Brooks, N. L. (1998). The circadian rhythm of sperm release in the codling moth, Cydia pomonella. Entomol. Exp. Appl. 88: 229-234.Google Scholar
  16. Halliday, T., and Arnold, S. J. (1987). Multiple mating by females: A perspective from quantitative genetics. Anim. Behav. 35: 939-941.Google Scholar
  17. Helversen, D. V., and Helversen, O. V. (1991). Pre-mating sperm removal in the bush cricket Metaplastes ornatus Ramme 1931 (Orthoptera, Tettigonidae, Phaneropteridae). Behav. Ecol. Sociobiol. 28: 391-396.Google Scholar
  18. Hou, M. L., and Sheng, C. F. (1999). Fecundity and longevity of Helicoverpa armigera (Lepidoptera: Noctuidae): Effects of multiple mating. J. Econ. Entomol. 92: 569-573.Google Scholar
  19. Howell, J. F. (1991). Reproductive biology. In Van Der Geest, L. P. S., and Evenhuis, H. H. (eds.), World Crop Pest. Tortricid Pests, Their Biology, Natural Enemies and Control, Elsevier, Amsterdam, pp. 157-174.Google Scholar
  20. Hurst, G. D. D., Sharpe, R. G., Broomfield, A. H., Walker, L. E., Majerus, T. M. O., Zakharov, I. A., and Majerus, M. E. N. (1995). Sexually transmitted disease in a promiscuous insect, Adalia bipunctata. Ecol. entomol. 20: 230-236.Google Scholar
  21. Jiménez-Pérez, A., and Wang, Q. (2001). Growth and reproduction of “Cnephasiajactatana Walker (Lepidoptera: Tortricidae) under two rearing systems. N.Z. Entomol. 24: 75-78.Google Scholar
  22. Kawagoe, T., Suzuki, N., and Matsumoto, K. (2001). Multiple mating reduces longevity of females of the windmill butterfly Atrophaneura Alcinous. Ecol. Entomol. 26: 258-262.Google Scholar
  23. Keller, L., and Reeve, H. (1995). Why do females mate with multiple males? The sexually selected sperm hypothesis. Adv. Study Behav. 24: 291-315.Google Scholar
  24. Kraan, C. v. d., and Straten, v. d. M., (1988). Effects of mating rate and delayed mating on the fecundity of Adoxophyes orana. Entomol. Exp. Appl. 48: 15-23.Google Scholar
  25. LaMunyon, C. W. (1997). Increased fecundity, as a function of multiple mating, in an arctiid moth, Utetheisa ornatrix. Ecol. Entomol. 22: 69-73.Google Scholar
  26. Lingren, P. D., Warner, W. B., and Henneberry, T. J. (1988). Influence of delayed mating on egg production, egg viability, mating and longevity of female pink bollworm (Lepidoptera: Gelechiidae). Environ. Entomol. 17: 86-89.Google Scholar
  27. Madsen, T., Shine, R., Loman, J., and Hakansson, T. (1992). Why do female adders copulate so frequently? Nature 355: 440-441.Google Scholar
  28. Newcomer, S. D., Zeh, J. A., and Zeh, D. W. (1999). Genetic benefits enhance the reproductive success of polyandrous females. Proc. Natl. Acad. Sci. USA 96: 10236-10241.Google Scholar
  29. Oberhauser, K. (1989). Effects of spermatophores on male and female monarch butterfly reproductive success. Behav. Ecol. Sociobiol. 25: 237-246.Google Scholar
  30. Ochieng'-Odero, J. P. R., and Singh, P. (1992). Life cycle during 12 successive generations of laboratory colonisation of the leafrollers Cnephasia jactatana (Walker) (Lepidoptera: Tortricidae) on artificial diet. N.Z. J. Zool. 19: 113-121.Google Scholar
  31. Ofuya, T. I. (1995). Multiple mating and its consequences in males of Callosobruchus maculatus (F) (Coleoptera, Bruchidae). J. Stored Prod. Res. 31: 71-75.Google Scholar
  32. Ono, T., Hayakawa, F., Matsuura, Y., Shiraishi, M., Yasui, H., Nakamura, T., and Arakawa, M. (1995). Reproductive biology and function of multiple mating in the mating system of a tree cricket, Truljalia hibinonis (Orthoptera, Podoscritinae). J. Insect Behav. 8: 813-824.Google Scholar
  33. Pardo, M. C., López-León, M. D., Hewitt, G. M., and Camacho, J. P. M. (1995). Female fitness is increased by frequent mating in grasshoppers. Heredity 74: 654-660.Google Scholar
  34. Proshold, F. I. (1996). Reproductive capacity of laboratory-reared gypsy moths (Lepidoptera: Lymantriidae): Effect of age of female at time of mating. J. Econ. Entomol. 89: 337-342.Google Scholar
  35. Reynolds, J. D. (1996). Animal breeding systems. Trends Ecol. Evol. 11: 68-72.Google Scholar
  36. Ridley, M. (1990). The control and frequency of mating in insects. Funct. Ecol. 4: 75-84.Google Scholar
  37. Rodríguez, R. L. (1988). Possible female choice during mating in Ozophora baranowskii (Heteroptera: Lygaeidae): Female behavior, multiple matings, and sperm transfer. J. Insect Behav. 11: 725-741.Google Scholar
  38. Rolff, J., and Siva-Jothy, M. T. (2002). Copulation corrupts immunity: A mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. USA 99: 9916-9918.Google Scholar
  39. Rowe, L. (1994). The cost of mating and mate choice in water striders. Anim. Behav. 48: 1049-1056.Google Scholar
  40. Royer, L., and McNeil, J. N. (1991). Changes in calling behavior and mating success in the European corn borer (Ostrinia nubilalis), caused by relative humidity. Entomol. Exp. Appl. 61: 131-138.Google Scholar
  41. Rutowski, R. L., Gilehrist, G. W., and Terkanian, B. (1987). Female butterflies mated with recently mated males show reduced reproductive output. Behav. Ecol. Sociobiol. 20: 319-322.Google Scholar
  42. Sadek, M. M. (2001). Polyandry in field-collected Spodoptera littoralis moths and laboratory assessment of the effects of male mating history. Entomol. Exp. Appl. 98: 165-172.Google Scholar
  43. Sakurai, T. (1996). Multiple mating and its effect on female reproductive output in the bean bug Reptortus clavatus (Heteroptera: Alydidae). Ann. Entomol. Soc. Am. 89: 481-485.Google Scholar
  44. Sakurai, T. (1998). Receptivity of female remating and sperm number in the sperm storage organ in the bean bug, Riptortus clavatus (Heteroptera: Alydidae). Res. Popul. Ecol. 40: 167-172.Google Scholar
  45. SAS (1996). User's Manual, Version 6.12, SAS Institute, Cary, NC.Google Scholar
  46. Savalli, U. M., and Fox, C. W. (1999). The effect of male mating history on paternal investment, fecundity and female remating in the seed beetle Callosobruchus maculatus. Funct. Ecol. 13: 169-177.Google Scholar
  47. Shapiro, D. Y., Marconato, A., and Yoshikawa, T. (1994). Sperm economy in a coral fish Thalassoma bifasciatum. Ecology 75: 1334-1344.Google Scholar
  48. Singh, P. (1983). A general purpose laboratory diet mixture for rearing insects. Insect Sci Appl. 4: 357-362.Google Scholar
  49. Spurgeon, D. W., Lingren, P. D., Raulston, J. R., and Shaver, T. N. (1995). Age-specific mating activities of Mexican rice borers (Lepidoptera: Pyralidae). Environ. Entomol. 24: 105-109.Google Scholar
  50. Steel, R. G., Torrie, J. H., and Dickey, D. A. (1997). Principles and Procedures of Statistics. A Biometrical Approach, McGraw–Hill, New York.Google Scholar
  51. Svärd, L., and Wiklund, C. (1988). Fecundity, egg weight and longevity in relation to multiple matings in females of the monarch butterfly. Behav. Ecol. Sociobiol. 23: 39-43.Google Scholar
  52. Thornhill, R., and Alcock, J. (1983). The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.Google Scholar
  53. Tregenza, T., and Wedell, N. (2002). Polyandrous females avoid cost of inbreeding. Nature 415: 71-73.Google Scholar
  54. Wang, Q., and Millar, J. G. (1997). Reproductive behavior of Thyanta pallidovirens(Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 90: 380-388.Google Scholar
  55. Ward, K. E., and Landolt, P. J. (1995). Influence of multiple matings on fecundity and longevity of female cabbage-looper moths (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 88: 768-772.Google Scholar
  56. Wedell, N., and Cook, P. A. (1999). Butterflies taylor their ejaculate in response to sperm competition risk and intensity. Proc. R. Soc. London B 266: 1033-1039.Google Scholar
  57. Wiklund, C., Kaitala, A., Lindfors, V., and Abenius, J. (1993). Polyandry and its effects on female reproduction in the green-veined white butterfly (Pieris napi L). Behav. Ecol. Sociobiol. 33: 25-33.Google Scholar
  58. Wilson, N., Tufton, T. J., and Eady, P. E. (1999). The effect of single, double, and triple matings on the lifetime fecundity of Callosobruchus analis and Callosobruchus maculatus (Coleoptera: Bruchidae). J. Insect Behav. 12: 295-306.Google Scholar
  59. Zeh, J. A., and Zeh D. W. (1996). The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. Proc. R. Soc. London B 263: 1711-1717.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Alfredo Jiménez-Pérez
    • 1
  • Qiao Wang
    • 1
  • Ngaire Markwick
    • 2
  1. 1.Entomology and IPM Laboratory, Institute of Natural ResourcesMassey UniversityPalmerston NorthNew Zealand
  2. 2.HortResearch, Mt. Albert Research CentreAucklandNew Zealand

Personalised recommendations