Journal of Insect Behavior

, Volume 10, Issue 6, pp 819–827 | Cite as

Better Hosts Dive: Detachment of Ectoparasitic Water Mites (Hydrachnellae: Arrenuridae) from Damselflies (Odonata: Coenagrionidae)

  • Jens Rolff

Abstract

Water mite larvae parasitizing damselflies must detach while the host is in a suitable reproduction habitat for both parasites and itself. They should do so during the host's oviposition. In this paper I present experimental data for the detachment rate of water mite larvae (Arrenurus cuspidator) from different host species, Coenagrion hastulatum and C. puella, in relation to the host's oviposition behavior. C. hastulatum oviposits submerged, whereas C. puella oviposits at the water surface and aggregates with conspecifics. It was found that mite larvae detach at a significantly higher ratio from hosts with submerged oviposition. Experimental tests showed that this is not a species-specific effect. It is caused mainly by the oviposition behavior. The results are discussed in the light of different oviposition systems in damselflies.

detachment submerged oviposition ectoparasitic Arrenurus larvae coenagrionid damselflies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Åbro, A. (1982). The effects of parasitic water mite larvae (Arrenurus spp.) on zygopteran imagoes (Odonata). J. Invertebr. Pathol. 39: 373–381.Google Scholar
  2. Anderson, T., and Anderson, N. (1995). Detachment of water mite larvae (Arrenurus sp.) from the damselfly Argia vivida HAGEN. Bull. NABS 12: 163–164.Google Scholar
  3. Askew, R. (1988). The Dragonflies of Europe, Harley Books, Colchester.Google Scholar
  4. Baker, R. L. (1987). Dispersal of larval damselflies: Do larvae exhibit spacing behaviour in the field? J. North Am. Benth. Soc. 6: 35–45.Google Scholar
  5. Baker, R. L., and Smith, B. P. (1997). Conflict between antipredator and antiparasite behaviour in larval damselflies. Oecologia 109: 622–628.Google Scholar
  6. Banks, M., and Thompson, D. J. (1985a). Emergence, longevity and breeding area fidelity in Coenagrion puella (L.) (Zygoptera: Coenagrionidae). Odonatologica 14: 279–286.Google Scholar
  7. Banks, M., and Thompson, D. J. (1985b). Lifetime mating success in the damselfly Coenagrion puella. Anim. Behav. 33: 1175–1183.Google Scholar
  8. Bonn, A., Gasse, M., Rolff, J., and Martens, A. (1996). Increased fluctuating asymmetry (FA) in the damselfly Coenagrion puella correlated with ectoparasitic water mites: Implications for fluctuating asymmetry theory. Oecologia 108: 596–598.Google Scholar
  9. Böttger, K. (1977). The general life cycle of fresh water mites (Hydrachnellae, Acari). Acarologia 18: 496–502.Google Scholar
  10. Corbet, P. S. (1962). A Biology of Dragonflies, Witherby, London.Google Scholar
  11. Corbet, P. S. (1980). Biology of Odonata. Annu. Rev. Entomol. 25: 189–217.Google Scholar
  12. Fincke, O. M. (1982). Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata: Coenagrionidae). Behav. Ecol. Sociobiol. 10: 293–302.Google Scholar
  13. Fincke, O. M. (1986). Underwater oviposition in a damselfly (Odonata: Coenagrionidae) favors male vigilance, and multiple mating by females. Behav. Ecol. Sociobiol. 18: 405–412.Google Scholar
  14. Forbes, M. R. L. (1991). Ectoparasites and mating success of male Enallagma ebrium damselflies (Odonata: Coenagrionidae). Oikos 60: 336–342.Google Scholar
  15. Forbes, M. R. L., and Baker, R. L. (1991). Condition and fecundity of the damselfly, Enallagma ebrium (Hagen): The importance of ectoparasites. Oecologia 86: 335–341.Google Scholar
  16. Forbes, M. R. L., and Leung, B. (1995). Pre-fabricated dining shelters as outdoor insectaries: An assessment using Enallagma ebrium (Hagen) (Zygoptera: Coenagrionidae). Odonatologica 24: 461–466.Google Scholar
  17. Lanciani, C. A. (1975). Parasite-induced alterations in host reproduction and survival. Ecology 56: 689–695.Google Scholar
  18. Langenbach, A. (1993). Time of colour change in female Ischnura pumilio (Charpentier) (Zygoptera: Coenagrionidae). Odonatologica 22: 469–477.Google Scholar
  19. Martens, A. (1994). Field experiments on aggregation behaviour and oviposition in Coenagrion puella (L.) (Zygoptera: Coenagrionidae). Adv. Odonatol. 6: 49–58.Google Scholar
  20. Miller, P. L. (1994). Submerged oviposition and responses to oxygen lack in Enallagma cyathigerum (Charpentier) (Zygoptera: Coenagrionidae). Adv. Odonatol. 6: 79–88.Google Scholar
  21. Mitchell, R. (1964). A study of sympatry in the water mite genus Arrenurus (family Areenuridae). Ecology 45: 546–558.Google Scholar
  22. Mitchell, R. (1967). Host exploitation of two closely related water mites. Evolution 21: 59–75.Google Scholar
  23. Münchberg, P. (1935). Zur Kenntnis der Odonatenparasiten, mit ganz besonderer Berücksichtigung der Ökologie der in Europa an Libellen schmarotzenden Wassermilbenlarven. Arch. Hydrobiol. 29: 1–120.Google Scholar
  24. Norling, U. (1984). The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatical different areas (Zygoptera: Coenagrionidae). Odonatologica 13: 429–449.Google Scholar
  25. Rehfeldt, G. E. (1995). Natürliche Feinde, Parasiten und Fortpflanzung von Libellen, Aqua and Terra, Braunschweig.Google Scholar
  26. Robinson, J. V. (1982). Effects of water mite parasitism on the demographics of an adult population of Ischnura posita (Hagen) (Odonata: Coenagrionidae). Am. Mid. Nat. 109: 169–174.Google Scholar
  27. Rolff, J., and Martens, A. (1997). Completing the life cycle: Detachment of an aquatic parasite (Arrenurus cuspidator, Hydrachnellae) from an aerial host (Coenagrion puella, Odonata). Can. J. Zool. 75: 655–658.Google Scholar
  28. Rolff, J., and Schröder, B. (1998). Regaining the water: A model approach for Arrenurus larvae parasitizing damselflies. Exp. Appl. Acarol. (in press).Google Scholar
  29. Smith, B. P. (1988). Host-parasite interaction and impact of larval water mites on insects. Annu. Rev. Entomol. 33: 487–507.Google Scholar
  30. Smith, B. P., and Laughland, L. (1990). Stimuli inducing detachment of larval Arrenurus danbyensis (Hydrachnidia: Arrenuridae) from adult Coquitellidia pertubans (Diptera: Culicidae). Exp. Appl. Acarol. 9: 51–62.Google Scholar
  31. Smith, I. M., and Oliver, D. (1986). Review of parasitic associations of larval water mites (Acari: Parasitogona: Hydrachnida) with insect hosts. Can. Entomol. 118: 407–472.Google Scholar
  32. Stechmann, D. H. (1977). Zur Phänologie und zum Wirtsspektrum einiger an Zygopteren (Odonata) und Nematoceren (Diptera) ektoparasitisch auftretenden Arrenurus-Arten (Hydrachnellae, Acari). Z. ang. Ent. 82: 349–355.Google Scholar
  33. Stechmann, D. H. (1978). Eiablage, Parasitismus und postparasitsche Entwicklung von Arrenurus-Arten (Hydrachnellae, Acari). Z. Parasitenkd. 57: 169–188.Google Scholar
  34. Vance, S. A. (1996). Morphological and behavioral sex reversal in mermithid-infected mayflies. Proc. Roy. Soc. Lond. B 263: 907–912.Google Scholar
  35. Waage, J. K. (1984). Sperm competition and the evolution of odonate mating systems. In Smith, R. L. (ed.), Sperm Competition and the Evolution of Animal Mating Systems, Academic Press, Orlando, FL, pp. 251–290.Google Scholar
  36. Waringer, J., and Humpesch, U. (1984). Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshw. Biol. 14: 385–399.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jens Rolff
    • 1
  1. 1.Zoologisches Institut der Technischen Universität, AG ÖkologieBraunschweigGermany

Personalised recommendations