Advertisement

Journal of Global Optimization

, Volume 29, Issue 1, pp 19–44 | Cite as

Optimization of Polynomial Fractional Functions

  • Hoang Tuy
  • Phan Thien Thach
  • Hiroshi Konno
Article

Abstract

A new approach is proposed for optimizing a polynomial fractional function under polynomial constraints, or more generally, a synomial fractional function under synomial constraints. The approach is based on reformulating the problem as the optimization of an increasing function under monotonic constraints.

fractional programming global optimization minimizing a sum of many linear fractions monotonic optimization polyblock approximation method polynomial synomial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dinkelbach, W. (1967), On nonlinear fractional programming, Management Science, 9, 16–24.Google Scholar
  2. 2.
    Duong, P.C. (1987), Finding the global extremum of a polynomial function. In: Essays on Nonlinear Analysis and Optimization Problems, Institute of Mathematics, Hanoi, pp. 111–120.Google Scholar
  3. 3.
    Floudas, C.A. et al. (1999), Handbook of Test Problems in Local and Global Optimization, Kluwer.Google Scholar
  4. 4.
    Ibaraki, T. (1981), Solving mathematical programming problems with fractional objective functions, In: Schaible, S. and Ziemba, W.T. (eds.), Generalized Concavity in Optimization and Economics, Academic Press, pp. 441–472.Google Scholar
  5. 5.
    Konno, H. and Fukaisi, K. (2000), A branch and bound algorithm for solving low rank linear multiplicative and fractional programming problems, Journal of Global Optimization, 18, 283–299.CrossRefGoogle Scholar
  6. 6.
    Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex Structures, Kluwer.Google Scholar
  7. 7.
    Gotoh, J.Y. and Konno, H. (1999), Maximization of the ratio of two convex quadratic functions over a polytope, Preprint, Dept of Industrial Engineering and Management, Tokyo Institute of Technology, Tokyo.Google Scholar
  8. 8.
    Hoai-Phuong, Ng.T. and Tuy, H. (2000), A unified monotonic approach to generalized linear fractional programming, Preprint, Hanoi Institute of Mathematics, Hanoi.Google Scholar
  9. 9.
    Horst, R. and Tuy, H. (1996), Global Optimization, Deterministic Approaches, third edition, Springer.Google Scholar
  10. 10.
    Ibaraki, T. (1983), Parametric approaches to fractional programs, Mathematical Programming, 26, 345–362.Google Scholar
  11. 11.
    Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex Structures, Kluwer.Google Scholar
  12. 12.
    Kuno, T. (1997), A variant of the outer approximation method for globally minimizing a class of composite functions, Journal of the Operations Research Society of Japan, 40, 245–260.Google Scholar
  13. 13.
    Lasserre, J. (2001), Global optimization with polynomials and the problem of moments, SIAM J. on Optimization, 11, 796–817.CrossRefGoogle Scholar
  14. 14.
    Lasserre, J. (2002), Semidefinite programming vs. LP relaxations for polynomial programming, Mathematics of Operations Research, 27, 347–360.CrossRefGoogle Scholar
  15. 15.
    Rubinov, A., Tuy, H. and Mays, H. (2001), An algorithm for monotonic global optimization problems, Optimization, 49, 205–222.Google Scholar
  16. 16.
    Schaible, S. (1995), Fractional programming. In: Horst, R. and Pardalos, P. (eds.), Handbook of Global Optimization, Kluwer, pp. 495–608.Google Scholar
  17. 17.
    Sherali, H. and Tuncbilek, C.H. (1992), A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique, Journal of Global Optimization, 2, 101–112.CrossRefGoogle Scholar
  18. 18.
    Sherali, H. and Tuncbilek, C.H. (1997), New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems, Operations Research Letters, 21, 1–9.CrossRefGoogle Scholar
  19. 19.
    Sherali, H. (1998), Global optimization of nonconvex polynomial programming problems having rational exponents, Journal of Global Optim. Google Scholar
  20. 20.
    Shi, J. (1999), Global Optimization for Fractional Programming, Preprint, School of Management, Science University of Tokyo.Google Scholar
  21. 21.
    Shor, N.Z. (1998), Nondifferentiable Optimization and Polynomial Problems, Kluwer.Google Scholar
  22. 22.
    Stancu-Minasian, I.M. (1997), Fractional Programming: Theory, Methods and Applications (Mathematics and Its Applications), Kluwer.Google Scholar
  23. 23.
    Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer.Google Scholar
  24. 24.
    Tuy, H. (1997), Normal sets, polyblocks and monotonic optimization, Vietnam Journal of Mathematics, Springer Verlag, 27(4), 277–300.Google Scholar
  25. 25.
    Tuy, H. (2000), Monotonic Optimization: Problems and Solution Approaches, SIAM Journal on Optimization, 11(2), 464–494.CrossRefGoogle Scholar
  26. 26.
    Tuy, H. (2001), Polyblock Algorithms Revisited, preprint 2001/40, Institute of Mathematics, Hanoi.Google Scholar
  27. 27.
    Tuy, H. and Luc, L.T. (2000), A new approach to optimization under monotonic constraint, Journal of Global Optimization, in press.Google Scholar
  28. 28.
    Wingo, D.R. (1985), Globally minimizing polynomials without evaluating derivatives, Intl J. Comput. Math., 17(287).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hoang Tuy
    • 1
  • Phan Thien Thach
    • 1
  • Hiroshi Konno
    • 2
  1. 1.Institute of MathematicsHanoiVietnam (e-mail
  2. 2.Department of Industrial Engineering and ManagementTokyo Institute of TechnologyTokyo

Personalised recommendations