Advertisement

Journal of Fluorescence

, Volume 14, Issue 4, pp 425–441 | Cite as

Advances in Surface-Enhanced Fluorescence

  • Joseph R. LakowiczEmail author
  • Chris D. Geddes
  • Ignacy Gryczynski
  • Joanna Malicka
  • Zygmunt Gryczynski
  • Kadir Aslan
  • Joanna Lukomska
  • Evgenia Matveeva
  • Jian Zhang
  • Ramachandram Badugu
  • Jun Huang
Article

Abstract

We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces.

Silver island films colloids fluorescence nanotechnology radiative decay engineering metal-enhanced fluorescence photonic mode density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    K. H. Drexhage (1974). in E. Wolfe (Ed.), Progress in Optics, North-Holland, Amsterdam, pp. 161-323.Google Scholar
  2. 2.
    D. A. Weitz, S. Garoff, C. D. Hansen, and T. J. Gramila (1982). Fluorescent lifetimes of molecules on silver-island films. Opt. Lett. 7(2), 89-91.Google Scholar
  3. 3.
    F. R. Aussenegg, A. Leitner, M. E. Lippitsch, H. Reinish, and M. Reigler (1987). Novel aspects of fluorescence lifetime for molecules positioned close to metal surfaces. Surf. Sci. 139, 935-945.Google Scholar
  4. 4.
    A. Leitner, M.E. Lippitsch, S. Draxler, M. Reigler, and F.R. Aussenegg (1985). Fluorescence properties of dyes absorbed to silver islands, investigated by picosecond techniques, Appl. Phys. B 36, 106-109.Google Scholar
  5. 5.
    J. Gersten and A. Nitzan (1981). Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75 (3), 1139-1152.Google Scholar
  6. 6.
    D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan (1983). The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules absorbed on a rough silver surface. J. Chem Phys. 78(9), 5324-5338.Google Scholar
  7. 7.
    M. Fleischmann, P. J. Hendra, and A. J. McQuillan (1974). Raman spectra of pyridine absorbed at a silver electrode, Chem Phys. Letts. 26(2), 163-166.Google Scholar
  8. 8.
    D. L. Jeanmaire and R. P. Van Duyne (1977). Surface Raman spectroelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphtaic amines adsorbed on the anodized silver electrode, J. Elecroanal. Chem. 84, 1-20.Google Scholar
  9. 9.
    B. Pettingar and A. Gerolymatou (1984). Dyes adsorbed at Ag-colloids: Substitution of fluorescence and surface Raman scattering. Ber. Bunges. Phys. Chem. 88, 359-363.Google Scholar
  10. 10.
    K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld (1999). Surface-enhanced Raman scattering: A new tool for biochemistry spectroscopy. Curr. Sci. 77(7), 915-924.Google Scholar
  11. 11.
    T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim, and M. I. Simon (1999). Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785-793.Google Scholar
  12. 12.
    T. Vo-Dinh (1998). Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal. Chem. 17(8-9), 557-582.Google Scholar
  13. 13.
    S. Nie and S. R. Emory (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106.Google Scholar
  14. 14.
    K. Kneipp, H. Kneipp, V. Bhaskaran Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld (1998). Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E 57(6), R6281-R6284.Google Scholar
  15. 15.
    J. R. Lakowicz (2001). Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1-24.Google Scholar
  16. 16.
    J. R. Lakowicz, I. Gryczynski, Y. Shen, J. Malicka, and Z. Gryczynski (2001). Intensified fluorescence. Photonics Spectra, October 2001, 96-104.Google Scholar
  17. 17.
    J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. Geddes (2003). Radiative decay engineering: The role of photonic mode density in biotechnology, J. Phys. D Appl. Phys. 36, R240-R249.Google Scholar
  18. 18.
    I. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, and J. R. Lakowicz (2002). Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J. Phys. Chem. 106, 2191-2195.Google Scholar
  19. 19.
    J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski (2002). Radiative decay engineering: Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 301, 261-277.Google Scholar
  20. 20.
    J. Malicka, I. Gryczynski, B.P. Maliwal, J. Fang, and J. R. Lakowicz (2003). Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. Biopolym. (Biospectrosc.) 72, 96-104.Google Scholar
  21. 21.
    J. R. Lakowicz, B. P. Maliwal, J. Malicka, Z. Gryczynski, and I. Gryczynski (2002). Effects of Silver Island Films on the luminescent intensity and decay times of lanthanide chelates. J. Fluorescence. 12, 431-437.Google Scholar
  22. 22.
    B. P. Maliwal, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2003). Fluorescence properties of labeled proteins near silver colloid surfaces, Biopolym. (Biospectrosc.) 70, 585-594.Google Scholar
  23. 23.
    J. Malicka, I. Gryczynski, J. Fang, and J.R. Lakowicz (2003). Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. Anal. Biochem. 317, 136-146.Google Scholar
  24. 24.
    J. R., Lakowicz, J. Malicka, and I. Gryczynski (2003). Silver particles enhance emission of fluorescent DNA oligomers. BioTechniques 34, 62-68.Google Scholar
  25. 25.
    S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis, and E. B. Shera (1993). The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem. Photobiol. 57, 972-977.Google Scholar
  26. 26.
    C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seide (1999). In W. Retting, B. Strehmel, S.Schrader, and H. Seifert (Eds.), Applied Fluorescence in Chemistry, Biology and Medicine. MAFS Proceedings Book, Springer-Verlag, New York, 562 pp.Google Scholar
  27. 27.
    A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst (1983). Energy transfer in surface enhanced fluorescence. J. Chem. Phys. 79, 509-514.Google Scholar
  28. 28.
    P. J. Tarcha, J. DeSaja-Gonzalez, S. Rodriquez-Llorente, and R. Aroca (1999). Surface-enhanced fluorescence on SiO2 coated silver island films, Appl. Spectrosc. 53, 43-48.Google Scholar
  29. 29.
    A. E. German and G.A. Gachko (2001). Dependence of the amplification of giant Raman scattering and fluorescence on the distance between an adsorbed molecule and a metal surface. J. Appl. Spectrosc. 68, 987-992.Google Scholar
  30. 30.
    K. Sokolov, G. Chumanov, and T. M. Cotton (1998). Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 70, 3898-3905.Google Scholar
  31. 31.
    J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2003). Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal. Biochem. 317, 57-66.Google Scholar
  32. 32.
    R. C. Ebersole, J. A. Miller, J. R. Moran, and M. D. Ward (1990). Spontaneously formed functionally active avidin monolayers on metal surfaces: A strategy for immobilizing biological reagents and design of piezoelectric biosensors. J. Am. Chem. Soc. 112, 3239-3241.Google Scholar
  33. 33.
    J. Jablonski (1955). Self-depolarization and decay of photoluminescence of solutions. Acta Phys. Pol. XIV, 295-307.Google Scholar
  34. 34.
    C. Bojarski, J. Grabowska, L. Kulak, and J. Kusba (1991). Investigations of the excitation energy transport mechanism in donor-acceptor systems. J. Fluoresc. 1, 183-191.Google Scholar
  35. 35.
    R. S. Knox (1968). Theory of polarization quenching by excitation transfer. Physica 39, 361-386.Google Scholar
  36. 36.
    P. Bojarski, L. Kulak, C. Bojarski, and A. Kawski (1995). Nonradiative excitation energy transport in one-component disordered systems. J. Fluoresc. 5, 307-319.Google Scholar
  37. 37.
    R. E. Dale and R. K. Bauer (1971). Concentration depolarization of the fluorescence of dyestuffs in viscous solution. Acta Phys. Pol. A 40, 853-882.Google Scholar
  38. 38.
    C. R. Gocanour and M. D. Fayer (1981). Electronic excited state transport in random systems. Time-resolved fluorescence depolarization measurements. J. Phys. Chem. 85, 1989-1994.Google Scholar
  39. 39.
    A. Kawski (1983). Excitation energy transfer and its manifestation in isotropic media, Photochem. Photobiol. 38, 487-508.Google Scholar
  40. 40.
    I. A. Hemmila (1991). Applications of Fluorescence in Immunoassays, Wiley, New York, p. 113.Google Scholar
  41. 41.
    X. Zhuang, T. Ha, H. D. Kim, T. Centner, S. Labeit, and S. Chu (2000). Fluorescence quenching: A tool for single-molecule protein-folding study, PNAS 97, 14241-14244.Google Scholar
  42. 42.
    S. Kalinin, J. G. Molotkovsky, and L. B.-A. Johansson (2003). Distance measurements using partial donor-donor energy migration with pairs of fluorescent groups in lipid bilayers. J. Phys. Chem. B 107, 3318-3324.Google Scholar
  43. 43.
    L. W. Runnels and S. F. Scarlata (1995). Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69, 1569-1583.Google Scholar
  44. 44.
    J. Karolin, M. Fa, M. Wilczynska, T. Ny, and L.B.-A. Johansson (1998). Donor-donor energy migration for determining intramolecular distances in proteins I. Application of a model to the latent plasminogen activator inhibitor-1 (PAI-1). Biophys. J. 74, 11-21.Google Scholar
  45. 45.
    G. C. Visor and S. D. Schulman (1981). Fluorescence immunoassay. J. Pharm. Sci., 70, 469-475.Google Scholar
  46. 46.
    T. Vo-Dinh, M. J. Sepaniak, G. D. Griffin, and J. P. Alarie (1993). Immunosensors: Principles and applications. Immunomethods, 3, 85-92.Google Scholar
  47. 47.
    M. N. Kronick and P. D. Grossman (1983). Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin. Chem. 29, 1582-1586.Google Scholar
  48. 48.
    E. Soini and H. Kojola (1983). Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotropic immunoassays. Clin. Chem. 29, 65-68.Google Scholar
  49. 49.
    J. R. Lakowicz, J. Malicka, S. D'Auria, and I. Gryczynski (2003). Release of the self-quenching of fluorescence near silver metallic surfaces. Anal. Biochem. 320, 13-20.Google Scholar
  50. 50.
    J. Malicka, I. Gryczynski, and J. R. Lakowicz (2003). Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces. Anal. Chem. 75, 4408-4414.Google Scholar
  51. 51.
    J. R. Lakowicz, J. Malicka, J. Huang, Z. Gryczynski, and I. Gryczynski (in press). Ultra-bright fluoresceine labeled antibodies near silver metallic surfaces. Biopolym. Google Scholar
  52. 52.
    L. E. Morrison (2003). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 7, Kluwer Academic/Plenum Press, New York, pp. 69-103.Google Scholar
  53. 53.
    P. O. Brown and D. Botstein (1999). Exploring the new world of the genome with DNA microarrays. Nat. Genet. Suppl. 21, 33-37.Google Scholar
  54. 54.
    M. Schena, R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998). Microarrays: Biotechnology's discovery platform for functional genomics. TIBTECH 16, 301-306.Google Scholar
  55. 55.
    F. Komurian-Pradel, G. Paranhos-Bacala, M. Sodoyer, P. Chevallier, B. Mandrand, V. Lotteau, and P. Andre (2001). Quantitation of HCV RNA using real-time PCR and fluorimetry. J. Virol. Methods 95, 111-119.Google Scholar
  56. 56.
    N. J. Walker (2002). A technique whose time has come. Science 296, 557-559.Google Scholar
  57. 57.
    M. J. Difilippantonio and T. Ried (2003). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 7, Kluwer Academic/Plenum Press, New York, pp. 291-316.Google Scholar
  58. 58.
    J. Malicka, I. Gryczynski, and J. R. Lakowicz (2003). DNA hybridization assays using metal-enhanced fluorescence. Biochem. Biophys. Res. Commun. 306, 213-218.Google Scholar
  59. 59.
    I. Gryczynski, J. Malicka, E. Holder, N. DiCesare, and J. R. Lakowicz (2003). Effects of metallic silver particles on the emission properties of [Ru(bpy)3]2+. Chem. Phys. Lett. 372, 409-414.Google Scholar
  60. 60.
    J. R. Lakowicz, J. Malicka, and I. Gryczynski (2003). Increased intensities of YOYO-1-labeled DNA oligomers near silver particles. Photochem. Photobiol. 77, 604-607.Google Scholar
  61. 61.
    J. Malicka, I. Gryczynski, C. Geddes, and J.R. Lakowicz (2003). Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J. Biomed. Opt. 8, 472-478.Google Scholar
  62. 62.
    K. Sokolov, G. Chumanov, and T. M. Cotton (1998). Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem. 70, 3898-3905.Google Scholar
  63. 63.
    J. Turkevich, P. C. Stevenson, and J. Hillier (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. J. Discuss. Faraday Soc. 11, 55-75.Google Scholar
  64. 64.
    A. Henglein and M. Giersig (1999). Formation of colloidal silver particles: Capping action of citrate. J. Phys. Chem. B 103, 9533-9539.Google Scholar
  65. 65.
    L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Romez, and G. Morcillo (2001). Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor. Langmuir 17, 574-577.Google Scholar
  66. 66.
    C. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Fang, and J. R. Lakowicz (2003). Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of Indocyanine Green to in vivo imaging. J. Phys. Chem. A 107, 3443-3449.Google Scholar
  67. 67.
    J. Lukomska, J. Malicka, I. Gryczynski, and J. R. Lakowicz (2004). Fluorescence enhancements on silver colloid coated surfaces. J. Fluoresc. 14, 417-424.Google Scholar
  68. 68.
    K. Aslan, J. R. Lakowicz, and C. D. Geddes (in preparation). Rapid growth of silver nano-rods on surfaces for applications in metal-enhanced fluorescence. J. Phys. Chem. B. Google Scholar
  69. 69.
    K. Aslan, J. R. Lakowicz, and C. D. Geddes (in preparation). Rapid growth of silver triangles for surface-enhanced fluorescence. Appl. Spectrosc. Google Scholar
  70. 70.
    C. Geddes, A. Parfenov, and J. R. Lakowicz (2003). Photodeposition of silver can result in metal-enhanced fluorescence. Appl. Spectrosc. 57, 526-531.Google Scholar
  71. 71.
    C. Geddes, A. Parfenov, D. Roll, J. Fang, and J. R. Lakowicz (2003). Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir 19, 6236-6241.Google Scholar
  72. 72.
    C. D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka, and J. R. Lakowicz (2003). Silver fractal-like structures for metal-enhanced fluorescence: Enhanced fluorescence intensities and increased probe photostabilities. J. Fluoresc. 13, 267-276.Google Scholar
  73. 73.
    C. D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka, and J. R. Lakowicz (in press). Roughened silver electrodes for use in metal-enhanced fluorescence. Spectrochem. Acta A. Google Scholar
  74. 74.
    A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz (2003). Enhanced fluorescence from fluorophores on fractal silver surfaces. J. Phys. Chem. B 107, 8829-8833.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
    Email author
  • Chris D. Geddes
    • 1
  • Ignacy Gryczynski
    • 1
  • Joanna Malicka
    • 1
  • Zygmunt Gryczynski
    • 1
  • Kadir Aslan
    • 1
  • Joanna Lukomska
    • 1
  • Evgenia Matveeva
    • 1
  • Jian Zhang
    • 1
  • Ramachandram Badugu
    • 1
  • Jun Huang
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Center for Fluorescence SpectroscopyUniversity of MarylandBaltimore

Personalised recommendations