Journal of Fluorescence

, Volume 14, Issue 4, pp 391–400 | Cite as

Saccharide Sensing Using Gold and Silver Nanoparticles-A Review

  • Kadir Aslan
  • Jian Zhang
  • Joseph R. Lakowicz
  • Chris D. Geddes
Article

Abstract

We review new methodologies for glucose sensing from our laboratories based on the specific biological interactions between Con A, dextran-coated gold nanoparticles and glucose, and the interactions between dextran, glucose, and boronic-acid capped silver nanoparticles in solution. Our new approaches promise new tunable glucose sensing platforms. Dextran-coated gold nanoparticles were aggregated with the addition of Con A resulting in increase an in absorbance of nanoparticles at 650 nm, where the post-addition of glucose caused the dissociation of the aggregates and thus a decrease in the absorbance at 650 nm. The interaction of glucose and dextran with boronic acid-capped silver nanoparticles in solution resulted in enhanced luminescence intensity cumulatively due to surface-enhanced fluorescence and the decrease in absorbance at 400 nm, with an increase in absorbance at 640 nm. Lifetime measurements were used to distinguish the contribution from the surface-enhanced fluorescence. TEM was employed to assess the aggregation of nanoparticles.

Gold colloids silver colloids glucose sensing nanosensors monosaccharide polysaccharide plasmons surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson (1992). Clin. Chem. 38, 1618.Google Scholar
  2. 2.
    H. M. Heise, R. Marbach, T. H. Koschinsky, and F. A. Gries (1994). Ann. Occup. Hyg. 18, 439.Google Scholar
  3. 3.
    W. F. March, B. Rabinovitch, R. Adams, J. R. Wise, and M. Melton (1982) Trans. Am. Soc. Artif. Intern. Organs 28, 232.Google Scholar
  4. 4.
    B. Rabinovitch, W. F. March, and R. L. Adams (1982). Diabetes Care 5, 254.Google Scholar
  5. 5.
    G. M. Schier, R. G. Moses, I. E. T. Gan, and S. C. Blair (1988) Diabetes Res. Clin. Pract. 4, 177.Google Scholar
  6. 6.
    A. Labande and D. Astrue (2000). Colloids as redox sensors: Recognition of H2PO4 - and HSO4 - by amidoferrocenylalkylthiol-gold nanoparticles. Chem. Commun. 12, 1007-1008.Google Scholar
  7. 7.
    G. Schmid (1994). Clusters and Colloids from Theory to Applications, VCH, New York.Google Scholar
  8. 8.
    A. Henglein (1993). Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457-5471.Google Scholar
  9. 9.
    J. Belloni (1996). Curr. Opin. Colloid Interface Sci. 1, 184.Google Scholar
  10. 10.
    U. Kreibig and M. Vollmer (1995). Optical Properties of Metal Clusters, Springer, Berlin.Google Scholar
  11. 11.
    J. J. Storhoff, A. A. Lazarides, R. Mucic, C. A. Mirkin, R. Letsinger, and G. C. Schatz (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies. J. Am. Chem. Soc. 122, 4640-4650.Google Scholar
  12. 12.
    A. A. Lazarides and G. C. Schatz (2000). DNA-linked metal nanosphere materials: Structural basis for the optical properties. J. Phys Chem. B. 104, 460-467.Google Scholar
  13. 13.
    C. A. Mirkin and J. J. Storhoff (1999). Programmed materials synthesis with DNA. Chem. Rev. 99, 1849-1862.Google Scholar
  14. 14.
    R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122, 3795-3597.Google Scholar
  15. 15.
    C. A. Mirkin, R. L. Letsinger, R. L. Mucic, and J. J. Storhoff (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609.Google Scholar
  16. 16.
    Y. Kim, R. C. Johnson, and J. T. Hupp (2001). Gold nanoparticle-based sensing of “Spectroscopically Silent” heavy metal ions. Nano Lett. 1, 165-167.Google Scholar
  17. 17.
    S. Y. Lin, S. W. Liu, C. M. Lin, and C. H. Chen (2002). Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal. Chem. 74, 330-335.Google Scholar
  18. 18.
    N. T. K. Thanh and Z. Rosenzweig (2002). Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem. 74, 1624-1628.Google Scholar
  19. 19.
    C. D. Geddes, K. Aslan, J. Zhang, and J. R. Lakowicz (in press). SPIE Proc. Google Scholar
  20. 20.
    S. Lofas and B. Johnsson (1990). A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 1526-1528.Google Scholar
  21. 21.
    C. S. Weisbecker, M. G. Merritt, and G. M. Whitesides (1996). Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12, 3763-3772.Google Scholar
  22. 22.
    J. Zhang, C. D. Geddes, and J. R. Lakowicz (in press). SPIE Proc. Google Scholar
  23. 23.
    K. Aslan and V. H. Pérez-Luna (2002). Surface modification of colloidal gold by chemisorption of alkane thiols in the presence of a nonionic surfactant. Langmuir 18, 6059-6065.Google Scholar
  24. 24.
    G. Springsteen, C. E. Ballard, S. Gao, W. Wang, and B. Wang, (2001). The development of photometric sensors for boronic acids. Bioorg. Chem. 29, 259-270.Google Scholar
  25. 25.
    A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B. D. Smith, and N. Teramae, (2001). Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. Anal. Chem. 73, 1530-1536.Google Scholar
  26. 26.
    J. R. Lakowiczc (2001). Radiative decay engineering: Biophysical and biomedical applications. Anal. BioChem. 298, 1-24.Google Scholar
  27. 27.
    J. R. Lakowicz, Y.B. Shen, S. D'Auria, J. Malicka, J.Y. Fang, Z. Gryczynski, and I. Gryczynski (2002). Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. BioChem. 301, 261-277.Google Scholar
  28. 28.
    C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz (2003). Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A. 107, 3443-3449.Google Scholar
  29. 29.
    J. R. Lakowicz (1997). Principles of Fluorescence Spectroscopy, 2nd Ed., Kluwer Academic/Plenum, New York.Google Scholar
  30. 30.
    J. Malicka, I. Gryczynski, and J. R. Lakowicz, (2003). Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces. Anal. Chem. 75, 4408-4414.Google Scholar
  31. 31.
    K. Aslan, J. R. Lakowicz, and C. D. Geddes (in press). Plasmonic tunable glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Anal. Chim. Acta. (In press).Google Scholar
  32. 32.
    K. Aslan, J. R. Lakowicz, and C. D. Geddes (2004). Nanogold plasmon resonance based glucose sensing. Anal. Biochem. (Submitted).Google Scholar
  33. 33.
    J. Zhang, C. D. Geddes, and J. R. Lakowicz (2004). Competitive complexation of dextran and glucose with boronic acid capped on silver nanoparticles. Langmuir (Submitted).Google Scholar
  34. 34.
    J. Zhang, D. Roll, C. D. Geddes, and J. R. Lakowicz (2004). Aggregation of silver nanoparticle-dextran adducts with/without Concanavalin A and competitive displacement with glucose. J. Phys. Chem. B. (Submitted).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Kadir Aslan
    • 1
    • 2
  • Jian Zhang
    • 2
  • Joseph R. Lakowicz
    • 2
  • Chris D. Geddes
    • 1
  1. 1.Institute of Fluorescence and Center for Fluorescence Spectroscopy, Medical Biotechnology CenterUniversity of Maryland Biotechnology InstituteBaltimore
  2. 2.Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimore

Personalised recommendations