Journal of Fluorescence

, Volume 14, Issue 4, pp 377–389 | Cite as

Label Free Colorimetric Biosensing Using Nanoparticles

  • Nidhi Nath
  • Ashutosh Chilkoti


In this review article, we discuss a class of biosensors that exploit the change in the colorimetric properties of noble metal nanoparticles in response to biomolecular binding at their surface. Several sensor fabrication techniques as well as sensor configurations are discussed with an emphasis on their strengths and limitations. We conclude by presenting the future prospects and challenges for the successful transition of this technology from the laboratory to a commercial product.

Gold and silver nanoparticles surface plasmon resonance self assembled monolayer protein-ligand binding biosensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski (2000). Translating biomolecular recognition into nanomechanics. Science 288(5464), 316-318.Google Scholar
  2. 2.
    G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19(9), 856-860.Google Scholar
  3. 3.
    R. R. Shah and N. L. Abbott (2001). Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science 293(5533), 1296-1299.Google Scholar
  4. 4.
    K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, and M. Mrksich (2002). Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702-1705.Google Scholar
  5. 5.
    L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West (2003). A whole blood immunoassay using gold nanoshells. Anal. Chem. 75(10), 2377-2381.Google Scholar
  6. 6.
    T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757-1760.Google Scholar
  7. 7.
    J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959-1964.Google Scholar
  8. 8.
    R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078-1087.Google Scholar
  9. 9.
    N. Nath and A. Chilkoti (2002). A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74(3), 504-509.Google Scholar
  10. 10.
    A. J. Haes and R. P. Van Duyne (2002). A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124(35), 10596-10604.Google Scholar
  11. 11.
    J. Yguerabide and E. E. Yguerabide (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-I. Theory. Anal. Biochem. 262(2), 137-156.Google Scholar
  12. 12.
    J. Yguerabide and E. E. Yguerabide (1998). Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-II. Experimental characterization. Anal. Biochem. 262(2), 157-176.Google Scholar
  13. 13.
    U. Kreibig and M. Vollmer (1995). Optical Properties of Metal Clusters, Springer-Verlag, Berlin.Google Scholar
  14. 14.
    S. Link and M. A. El-Sayed (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3), 409-453.Google Scholar
  15. 15.
    E. D. Palik. (1984). Handbook of Optical Constants of Solids, Academic Press, Boston.Google Scholar
  16. 16.
    A. A. Lazarides and G. C. Schatz (2000). DNA-linked metal nanosphere materials: Structural basis for the optical properties. J. Phys. Chem. B 104(3), 460-467.Google Scholar
  17. 17.
    J. Turkevich (1985). Colloidal Gold. Part 1. Gold Bulletin 18(3), 86-91.Google Scholar
  18. 18.
    D. V. Goia and E. Matijevic (1998). Preparation of monodispersed metal particles. New J. Chem. 22(11), 1203-1215.Google Scholar
  19. 19.
    D. V. Goia and E. Matijevic (1999). Tailoring the particle size of monodispersed colloidal gold. Colloids Surf. A-Physicochem. Eng. Aspects 146(1-3), 139-152.Google Scholar
  20. 20.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman (1994). Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. (7), 801-802.Google Scholar
  21. 21.
    P. Y. Silvert, R. HerreraUrbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen (1996). Preparation of colloidal silver dispersions by the polyol process.1. Synthesis and characterization. J. Mater. Chem. 6(4), 573-577.Google Scholar
  22. 22.
    Y. Cao, R. Jin, and C. A. Mirkin (2001). DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123(32), 7961-7962.Google Scholar
  23. 23.
    D. A. Handley (1989). Methods for synthesis of colloidal gold. in M. A. Hayat (Ed.), Colloidal Gold: Principles, Methods, and Applications (Vol. 1) Academic Press, San Diego, CA, pp. 13-32.Google Scholar
  24. 24.
    C. J. Murphy and N. R. Jana (2002). Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14(1), 80-82.Google Scholar
  25. 25.
    S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan (2001). Submicrometer metallic barcodes. Science 294(5540), 137-141.Google Scholar
  26. 26.
    R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548), 1901-1903.Google Scholar
  27. 27.
    Y. Sun and Y. Xia (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601), 2176-2179.Google Scholar
  28. 28.
    C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, and S. Mann (2002). Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 12(6), 1765-1770.Google Scholar
  29. 29.
    N. R. Jana, L. Gearheart, and C. J. Murphy (2001). Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13(18), 1389-1393.Google Scholar
  30. 30.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas (1998). Nanoengineering of optical resonances. Chem. Phys. Lett. 288(2-4), 243-247.Google Scholar
  31. 31.
    Y. G. Sun and Y. N. Xia (2003). Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128(6), 686-691.Google Scholar
  32. 32.
    P. Englebienne (1998). Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7), 1599-1603.Google Scholar
  33. 33.
    P. Englebienne, A. Van Hoonacker, and J. Valsamis (2000). Rapid homogeneous immunoassay for human ferritin in the cobas mira using colloidal gold as the reporter reagent. Clin. Chem. 46(12), 2000-2003.Google Scholar
  34. 34.
    R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan (1995). Self-assembled metal colloid monolayers-an Approach to SERS substrates. Science 267(5204), 1629-1632.Google Scholar
  35. 35.
    K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan (1995). Preparation and characterization of Au colloid monolayers. Anal. Chem. 67(4), 735-743.Google Scholar
  36. 36.
    T. Okamoto, I. Yamaguchi, and T. Kobayashi (2000). Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt. Lett. 25(6), 372-374.Google Scholar
  37. 37.
    H. Nakamura and I. Karube (2003). Current research activity in biosensors. Anal. Bioanal. Chem. 377(3), 446-468.Google Scholar
  38. 38.
    S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and J. P. Chambers (2000). A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15(11-12), 549-578.Google Scholar
  39. 39.
    B. M. Paddle (1996). Biosensors for chemical and biological agents of defence interest. Biosens. Bioelectron. 11(11), 1079-1113.Google Scholar
  40. 40.
    P. VanDerVoort and E. F. Vansant (1996). Silylation of the silica surface a review. J. Liq. Chromatogr. Relat. Technol. 19(17-18), 2723-2752.Google Scholar
  41. 41.
    M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne (2001). Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123(7), 1471-1482.Google Scholar
  42. 42.
    Y. G. Sun and Y. N. Xia (2002). Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 74(20), 5297-5305.Google Scholar
  43. 43.
    W. H. Yang, G. C. Schatz, and R. P. Vanduyne (1995). Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103(3), 869-875.Google Scholar
  44. 44.
    E. J. Zeman and G. C. Schatz (1987). An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, in, Zn, and Cd. J. Phys. Chem.-Us 91(3), 634-643.Google Scholar
  45. 45.
    G. Decher (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277(5330), 1232-1237.Google Scholar
  46. 46.
    J. Schmitt, P. Machtle, D. Eck, H. Mohwald, and C. A. Helm (1999). Preparation and optical properties of colloidal gold monolayers. Langmuir 15(9), 3256-3266.Google Scholar
  47. 47.
    G. MacBeath and S. L. Schreiber (2000). Printing proteins as microarrays for high-throughput function determination. Science 289(5485), 1760-1763.Google Scholar
  48. 48.
    L. Movileanu, S. Howorka, O. Braha, and H. Bayley (2000). Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18(10), 1091-1095.Google Scholar
  49. 49.
    Y. Cui, Q. Wei, H. Park, and C. M. Lieber (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289-1292.Google Scholar
  50. 50.
    J. J. Mock, D. R. Smith, and S. Schultz (2003). Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. NanoLett. 3(4), 485-491.Google Scholar
  51. 51.
    T. Ito and S. Okazaki (2000). Pushing the limits of lithography. Nature 406(6799), 1027-1031.Google Scholar
  52. 52.
    Y. Chen and A. Pepin (2001). Nanofabrication: Conventional and nonconventional methods. Electrophoresis 22(2), 187-207.Google Scholar
  53. 53.
    K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz (2003). Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087-1090.Google Scholar
  54. 54.
    W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg (2003). Optical properties of two interacting gold nanoparticles. Opt. Commun. 220(1-3), 137-141.Google Scholar
  55. 55.
    S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha (2003). Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2(4), 229-232.Google Scholar
  56. 56.
    C. M. S. Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. C. Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari (2003). Nanoimprint lithography: An alternative nanofabrication approach. Mater. Sci. Eng. C, Biomimetic Supramol. Syst. 23(1-2), 23-31.Google Scholar
  57. 57.
    S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch, and C. M. S. Torres (2001). Nanoimprint lithography: Challenges and prospects. Nanotechnology 12(2), 91-95.Google Scholar
  58. 58.
    S. Y. Chou (2001). Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26(7), 512-517.Google Scholar
  59. 59.
    Y. N. Xia and G. M. Whitesides (1998). Soft lithography. Angew. Chem., Int. Ed. 37(5), 551-575.Google Scholar
  60. 60.
    Y. N. Xia and G. M. Whitesides (1998). Soft lithography. Annu. Rev. Mater. Sci. 28, 153-184.Google Scholar
  61. 61.
    Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides (1999). Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99(7), 1823-1848.Google Scholar
  62. 62.
    R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin (1999). “Dip-pen” nanolithography. Science 283(5402), 661-663.Google Scholar
  63. 63.
    C. A. Mirkin, S. H. Hong, and L. Demers (2001). Dip-pen nanolithography: Controlling surface architecture on the sub-100 nanometer length scale. Chem. Phys. Chem. 2(1), 37-39.Google Scholar
  64. 64.
    S. H. Hong, J. Zhu, and C. A. Mirkin (1999). Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286(5439), 523-525.Google Scholar
  65. 65.
    S. H. Hang and C. A. Mirkin (2000). A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808-1811.Google Scholar
  66. 66.
    G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein (2001). Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films. J. Am. Chem. Soc. 123(13), 3177-3178.Google Scholar
  67. 67.
    E. Hutter and M. P. Pileni (2003). Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Phys. Chem. B 107(27), 6497-6499.Google Scholar
  68. 68.
    T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne (2000). Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104(45), 10549-10556.Google Scholar
  69. 69.
    T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne (1999). Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. J. Phys. Chem. B 103(45), 9846-9853.Google Scholar
  70. 70.
    W. Frey, C. K. Woods, and A. Chilkoti (2000). Ultraflat nanosphere lithography: A new method to fabricate flat nanostructures. Adv. Mater. 12(20), 1515-1519.Google Scholar
  71. 71.
    A. D. McFarland and R. P. Van Duyne (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. NanoLett. 3(8), 1057-1062.Google Scholar
  72. 72.
    C. Hansen and S. R. Quake (2003). Microfluidics in structural biology: smaller, faster...better. Curr. Opin. Struct. Biol. 13(5), 538-544.Google Scholar
  73. 73.
    B. H. Weigl, R. L. Bardell, and C. R. Cabrera (2003). Lab-on-a-chip for drug development. Adv. Drug Deliv. Rev. 55(3), 349-377.Google Scholar
  74. 74.
    T. H. Schulte, R. L. Bardell, and B. H. Weigl (2002). Microfluidic technologies in clinical diagnostics. Clin. Chim. Acta 321(1-2), 1-10.Google Scholar
  75. 75.
    D. Figeys (2002). Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2(4), 373-382.Google Scholar
  76. 76.
    L. Mere, T. Bennett, P. Coassin, P. England, B. Hamman, T. Rink, S. Zimmerman, and P. Negulescu (1999). Miniaturized FRET assays and microfluidics: Key components for ultra-high-throughput screening. Drug Discov. Today 4(8), 363-369.Google Scholar
  77. 77.
    M. Faraday (1857). Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145-181.Google Scholar
  78. 78.
    R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin (2003). Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957), 487-490.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamNorth Carolina

Personalised recommendations