Journal of Fluorescence

, Volume 14, Issue 4, pp 343–354 | Cite as

Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles

Article

Abstract

Taking advantage of recent developments in the field of metallic nanoparticle-based colorimetric DNA detection and in the field of in vitro selection of functional DNA/RNA that can recognize a wide range of analytes, we have designed highly sensitive and selective colorimetric biosensors for many analytes of choice. As an example of the sensor design strategy, a highly sensitive and selective colorimetric lead biosensor based on DNAzyme-directed assembly of gold nanoparticles is reviewed. The DNAzyme consists of an enzyme and a substrate strand, which can be used to assemble DNA-functionalized gold nanoparticles. The aggregation brings gold nanoparticles together, resulting in a blue-colored nanoparticle assembly. In the presence of lead, the DNAzyme catalyzes specific hydrolytic cleavage of the substrate strand, which disrupts the formation of the nanoparticle assembly, resulting in red-colored individual nanoparticles. The application of the sensor in lead detection in leaded paint is also demonstrated. In perspective, the use of allosteric DNA/RNAzymes to expand the range of the nanoparticle-based sensor design method is described.

Nanoparticles colorimetric biosensors aptamers DNAzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. B. Weiser (1933). Inorganic Colloid Chemistry, Vol. 1, Wiley, New York.Google Scholar
  2. 2.
    D. A. Handley (1989). In M. A. Hayat (Ed.), Coloidal Gold Principles, Methods, and Applications, Academic Press, San Diego, CA, pp. 1-12.Google Scholar
  3. 3.
    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607-609.Google Scholar
  4. 4.
    R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin (1997). Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329), 1078-1080.Google Scholar
  5. 5.
    J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959-1964.Google Scholar
  6. 6.
    T. A. Taton, C. A. Mirkin, and R. L. Letsinger (2000). Scanometric DNA array detection with nanoparticle probes. Science 289(5485), 1757-1760.Google Scholar
  7. 7.
    Y. Cao, R. Jin, and C. A. Mirkin (2001). DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123(32), 7961-7962.Google Scholar
  8. 8.
    G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger (1999). Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122-8123.Google Scholar
  9. 9.
    R. Chakrabarti and A. M. Klibanov (2003). Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J. Am. Chem. Soc. 125(41), 12531-12540.Google Scholar
  10. 10.
    K. Sato, K. Hosokawa, and M. Maeda (2003). Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 125(27), 8102-8103.Google Scholar
  11. 11.
    L. Gold, B. Polisky, O. Uhlenbeck, and M. Yarus (1995). Diversity of oligonucleotide functions. Annu. Rev. Biochem. 64, 763-797.Google Scholar
  12. 12.
    S. E. Osborne and A. D. Ellington (1997). Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97(2), 349-370.Google Scholar
  13. 13.
    R. R. Breaker (1997). In vitro selection of catalytic polynucleotides. Chem. Rev. 97(2), 371-390.Google Scholar
  14. 14.
    D. S. Wilson and J. W. Szostak (1999). In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611-647.Google Scholar
  15. 15.
    G. F. Joyce and L. E. Orgel (1999). In R. F. Gesteland, T. R. Cech, and J. F. Atkins (Ed.), RNA World, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 49-77.Google Scholar
  16. 16.
    S. D. Jayasena (1999). Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628-1650.Google Scholar
  17. 17.
    E. N. Brody and L. Gold (2000). Aptamers as therapeutic and diagnostic agents. Rev. Mol. Biotech. 74(1), 5-13.Google Scholar
  18. 18.
    J. Hesselberth, M. P. Robertson, S. Jhaveri, and A. D. Ellington (2000). In vitro selection of nucleic acids for diagnostic applications. Rev. Mol. Biotechnol. 74(1), 15-25.Google Scholar
  19. 19.
    G. A. Soukup and R. R. Breaker (2000). Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10(3), 318-325.Google Scholar
  20. 20.
    R. R. Breaker (2002). Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13(1), 31-39.Google Scholar
  21. 21.
    H. Ueyama, M. Takagi, and S. Takenaka (2002). A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am. Chem. Soc. 124(48), 14286-14287.Google Scholar
  22. 22.
    J. Ciesiolka and M. Yarus (1996). Small RNA-divalent domains. RNA 2(8), 785-793.Google Scholar
  23. 23.
    H. P. Hofmann, S. Limmer, V. Hornung, and M. Sprinzl (1997). Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. RNA 3(11), 1289-1300.Google Scholar
  24. 24.
    A. D. Ellington and J. W. Szostak (1992). Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363), 850-852.Google Scholar
  25. 25.
    A. D. Ellington and J. W. Szostak (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818-822.Google Scholar
  26. 26.
    C. Wilson and J. W. Szostak (1998). Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem. Biol. 5(11), 609-617.Google Scholar
  27. 27.
    D. Grate and C. Wilson (1999). Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 96(11), 6131-6136.Google Scholar
  28. 28.
    C. Wilson, J. Nix, and J. Szostak (1998). Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37(41), 14410-14419.Google Scholar
  29. 29.
    M. N. Stojanovic, P. de Prada, and D. W. Landry (2000). Fluorescent sensors based on aptamer self-assembly. J. Am. Chem. Soc. 122(46), 11547-11548.Google Scholar
  30. 30.
    G. R. Zimmermann, C. L. Wick, T. P. Shields, R. D. Jenison, and A. Pardi (2000). Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6(5), 659-667.Google Scholar
  31. 31.
    M. Meli, J. Vergne, J.-L. Decout, and M.-C. Maurel (2002). Adenine-aptamer complexes. A bipartite RNA site that binds the adenine nucleic base. J. Biol. Chem. 277(3), 2104-2111.Google Scholar
  32. 32.
    C. Mannironi, A. Di Nardo, P. Fruscoloni, and G. P. Tocchini-Valentini (1997). In vitro selection of dopamine RNA ligands. Biochemistry 36(32), 9726-9734.Google Scholar
  33. 33.
    I. Majerfeld and M. Yarus (1994). An RNA pocket for an aliphatic hydrophobe. Nat. Struct. Biol. 1(5), 287-292.Google Scholar
  34. 34.
    M. Famulok and J. W. Szostak (1992). Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114(10), 3990-3991.Google Scholar
  35. 35.
    K. Harada and A. D. Frankel (1995). Identification of two novel arginine binding DNAs. EMBO J. 14(23), 5798-5811.Google Scholar
  36. 36.
    G. J. Connell, M. Illangesekare, and M. Yarus (1993). Three small ribooligonucleotides with specific arginine sites. Biochemistry 32(21), 5497-5502.Google Scholar
  37. 37.
    J. Tao and A. D. Frankel (1996). Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry 35(7), 2229-2238.Google Scholar
  38. 38.
    M. Famulok (1994). Molecular recognition of amino acids by RNA-aptamers: An L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116(5), 1698-1706.Google Scholar
  39. 39.
    G. J. Connell and M. Yarus (1994). RNAs with dual specificity and dual RNAs with similar specificity. Science 264(5162), 1137-1141.Google Scholar
  40. 40.
    N. K. Vaish, R. Larralde, A. W. Fraley, J. W. Szostak, and L. W. McLaughlin (2003). A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry 42(29), 8842-8851.Google Scholar
  41. 41.
    M. Sassanfar and J. W. Szostak (1993). An RNA motif that binds ATP. Nature 364(6437), 550-553.Google Scholar
  42. 42.
    J. H. Davis and J. W. Szostak (2002). Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl. Acad. Sci. U.S.A. 99(18), 11616-11621.Google Scholar
  43. 43.
    M. Koizumi and R. R. Breaker (2000). Molecular recognition of cAMP by an RNA aptamer. Biochemistry 39(30), 8983-8992.Google Scholar
  44. 44.
    S. M. Rink, J.-C. Shen, and L. A. Loeb (1998). Creation of RNA molecules that recognize the oxidative lesion 7,8-dihydro-8-hydroxy-2'-deoxyguanosine (8-oxodG) in DNA. Proc. Natl. Acad. Sci. U.S.A. 95(20), 11619-11624.Google Scholar
  45. 45.
    C. Boiziau, E. Dausse, L. Yurchenko, and J.-J. Toulme (1999). DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J. Biol. Chem. 274(18), 12730-12737.Google Scholar
  46. 46.
    C. T. Lauhon and J. W. Szostak (1995). RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117(4), 1246-1257.Google Scholar
  47. 47.
    P. Burgstaller and M. Famulok (1994). Isolation of RNA aptamers for biological cofactors by in vitro selection Angew. Chem. 106(10), 1163-1166 (see also Angew. Chem., Int. Ed. Engl. 1133(1110), 1084-1167(1994).Google Scholar
  48. 48.
    D. J. F. Chinnapen and D. Sen (2002). Hemin-stimulated docking of cytochrome c to a Hemin-DNA aptamer complex. Biochemistry 41(16), 5202-5212.Google Scholar
  49. 49.
    J. R. Lorsch and J. W. Szostak (1994). In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33(4), 973-982.Google Scholar
  50. 50.
    M. Roychowdhury-Saha, S. M. Lato, E. D. Shank, and D. H. Burke (2002). Flavin recognition by an RNA aptamer targeted towardFAD. Biochemistry 41(8), 2492-2499.Google Scholar
  51. 51.
    D. Burke and D. Hoffman (1998). A novel acidophilic RNA motif that recognizes coenzyme A. Biochemistry 37(13), 4653-4663.Google Scholar
  52. 52.
    Y. Wang, J. Killian, K. Hamasaki, and R. R. Rando (1996). RNA molecules that specifically and stoichiometrically bind aminoglycoside antibiotics with high affinities. Biochemistry 35(38), 12338-12346.Google Scholar
  53. 53.
    M. G. Wallis, U. von Ahsen, R. Schroeder, and M. Famulok (1995). A novel RNA motif for neomycin recognition. Chem. Biol. 2(8), 543-552.Google Scholar
  54. 54.
    Q. Yang, I. J. Goldstein, H.-Y. Mei, and D. R. Engelke (1998). DNA ligands that bind tightly and selectively to cellobiose. Proc. Natl. Acad. Sci. U.S.A. 95(10), 5462-5467.Google Scholar
  55. 55.
    C. Srisawat, I. J. Goldstein, and D. R. Engelke (2001). Sephadex-binding RNA ligands: Rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 29(2), E4/1-E4/5.Google Scholar
  56. 56.
    S. T. Wallace and R. Schroeder (1998). In vitro selection and characterization of streptomycin-binding RNAs: Recognition discrimination between antibiotics. RNA 4(1), 112-123.Google Scholar
  57. 57.
    M. G. Wallis, B. Streicher, H. Wank, U. von Ahsen, E. Clodi, S. T. Wallace, M. Famulok, and R. Schroeder (1997). In vitro selection of a viomycin-binding RNA pseudoknot. Chem. Biol. 4(5), 357-366.Google Scholar
  58. 58.
    C. Berens, A. Thain, and R. Schroeder (2001). A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9(10), 2549-2556.Google Scholar
  59. 59.
    L. Giver, D. Bartel, M. Zapp, A. Pawul, M. Green, and A. D. Ellington (1993). Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 21(23), 5509-5516.Google Scholar
  60. 60.
    K. P. Williams, X.-H. Liu, T. N. M. Schumacher, H. Y. Lin, D. A. Ausiello, P. S. Kim, and D. P. Bartel (1997). Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc. Natl. Acad. Sci. U.S.A. 94(21), 11285-11290.Google Scholar
  61. 61.
    D. Nieuwlandt, M. Wecker, and L. Gold (1995). In vitro selection of RNA ligands to substance P. Biochemistry 34(16), 5651-5659.Google Scholar
  62. 62.
    L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360), 564-566.Google Scholar
  63. 63.
    C. Tuerk, S. MacDougal, and L. Gold (1992). RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 89(15), 6988-6992.Google Scholar
  64. 64.
    M. Vuyisich and P. A. Beal (2002). Controlling protein activity with ligand-regulated RNA aptamers. Chem. Biol. 9(8), 907-913.Google Scholar
  65. 65.
    F. Pileur, M.-L. Andreola, E. Dausse, J. Michel, S. Moreau, H. Yamada, S. A. Gaidamakov, R. J. Crouch, J.-J. Toulme, and C. Cazenave (2003). Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res. 31(19), 5776-5788.Google Scholar
  66. 66.
    N. C. Pagratis, C. Bell, Y.-F. Chang, S. Jennings, T. Fitzwater, D. Jellinek, and C. Dang (1997). Potent 2'-amino-, and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nature Biotech. 15(1), 68-73.Google Scholar
  67. 67.
    D. Jellinek, L. S. Green, C. Bell, C. K. Lynott, N. Gill, C. Vargeese, G. Kirschenheuter, D. P. C. McGee, P. Abesinghe, et al. (1995). Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34(36), 11363-11372.Google Scholar
  68. 68.
    J. Ruckman, L. S. Green, J. Beeson, S. Waugh, W. L. Gillette, D. D. Henninger, L. Claesson-Welsh, and N. Janjic (1998). 2'-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273(32), 20556-20567.Google Scholar
  69. 69.
    L. L. Lebruska and L. J. MaherIII (1999). Selection and characterization of an RNA decoy for transcription factor NF-ΚB. Biochemistry 38(10), 3168-3174.Google Scholar
  70. 70.
    T. W. Wiegand, P. B. Williams, S. C. Dreskin, M. H. Jouvin, J. P. Kinet, and D. Tasset (1996). High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immun. 157(1), 221-230.Google Scholar
  71. 71.
    I. A. Nazarenko and O. C. Uhlenbeck (1995). Defining a smaller RNA substrate for elongation factor Tu. Biochemistry 34(8), 2545-2552.Google Scholar
  72. 72.
    K. A. Davis, Y. Lin, B. Abrams, and S. D. Jayasena (1998). Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res. 26(17), 3915-3924.Google Scholar
  73. 73.
    S. Jeong, T.-Y. Eom, S.-J. Kim, S.-W. Lee, and J. Yu (2001). In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem. Biophys. Res. Commun. 281(1), 237-243.Google Scholar
  74. 74.
    M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener (2001). Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. Selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276(19), 16464-16468.Google Scholar
  75. 75.
    W. Pan, R. C. Craven, Q. Qiu, C. B. Wilson, J. W. Wills, S. Golovine, and J.-F. Wang (1995). Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc. Natl. Acad. Sci. U.S.A. 92(25), 11509-11513.Google Scholar
  76. 76.
    J. G. Bruno and J. L. Kiel (1999). In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens. Bioelectr. 14(5), 457-464.Google Scholar
  77. 77.
    J. Tsang and G. F. Joyce (1996). In vitro evolution of randomized ribozymes. Methods Enzymol. 267 (Combinatorial Chemistry), 410-426.Google Scholar
  78. 78.
    R. R. Breaker (1997). DNA enzymes. Nat. Biotechnol. 15(5), 427-431.Google Scholar
  79. 79.
    R. R. Breaker (1997). DNA aptamers and DNA enzymes. Curr. Opin. Chem. Biol. 1(1), 26-31.Google Scholar
  80. 80.
    D. Sen and C. R. Geyer (1998). DNA enzymes. Curr. Opin. Chem. Biol. 2(6), 680-687.Google Scholar
  81. 81.
    M. Kurz and R. R. Breaker (1999). In vitro selection of nucleic acid enzymes. Current Topics in Microbiology and Immunology 243 (Combinatorial Chemistry in Biology), 137-158.Google Scholar
  82. 82.
    T. R. Cech (1987). The chemistry of self-splicing RNA and RNA enzymes. Science 236(4808), 1532-1539.Google Scholar
  83. 83.
    T. R. Cech (2000). Perspectives. Structural biology: The ribosome is a ribozyme. Science 289(5481), 878-879.Google Scholar
  84. 84.
    N. K. Vaish, P. A. Heaton, O. Fedorova, and F. Eckstein (1998). In vitro selection of a purine nucleotide-specific hammerhead-like ribozyme. Proc. Natl. Acad. Sci. U.S.A. 95(5), 2158-2162.Google Scholar
  85. 85.
    E. H. Ekland, J. W. Szostak, and D. P. Bartel (1995). Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269(5222), 364-370.Google Scholar
  86. 86.
    J. R. Lorsch and J. W. Szostak (1994). In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371(6492), 31-36.Google Scholar
  87. 87.
    E. H. Ekland and D. P. Bartel (1996). RNA-catalyzed RNA polymerization using nucleoside triphosphates. Nature 382(6589), 373-376.Google Scholar
  88. 88.
    M. Illangasekare and M. Yarus (1997). Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J. Mol. Biol. 268(3), 631-639.Google Scholar
  89. 89.
    J. A. Piccirilli, T. S. McConnell, A. J. Zaug, H. F. Noller, and T. R. Cech (1992). Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256(5062), 1420-1424.Google Scholar
  90. 90.
    P. A. Lohse and J. W. Szostak (1996). Ribozyme-catalyzed amino-acid transfer reactions. Nature 381(6581), 442-444.Google Scholar
  91. 91.
    C. Wilson and J. W. Szostak (1995). In vitro evolution of a self-alkylating ribozyme. Nature 374(6525), 777-782.Google Scholar
  92. 92.
    M. Wecker, D. Smith, and L. Gold (1996). In vitro selection of a novel catalytic RNA: Characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2(10), 982-994.Google Scholar
  93. 93.
    X. Dai, A. De Mesmaeker, and G. F. Joyce (1995). Cleavage of an amide bond by a ribozyme. Science 267(5195), 237-240.Google Scholar
  94. 94.
    T. W. Wiegand, R. C. Janssen, and B. E. Eaton (1997). Selection of RNA amide synthases. Chem. Biol. 4(9), 675-683.Google Scholar
  95. 95.
    B. Zhang and T. R. Cech (1997). Peptide bond formation by in vitro selected ribozymes. Nature 390(6655), 96-100.Google Scholar
  96. 96.
    T. M. Tarasow, S. L. Tarasow, C. Tu, E. Kellogg, and B. E. Eaton (1999). Characteristics of an RNA diels-alderase active site. J. Am. Chem. Soc. 121(15), 3614-3617.Google Scholar
  97. 97.
    J. R. Prudent, T. Uno, and P. G. Schultz (1994). Expanding the scope of RNA catalysis. Science 264(5167), 1924-1927.Google Scholar
  98. 98.
    M. M. Conn, J. R. Prudent, and P. G. Schultz (1996). Porphyrin metalation catalyzed by a small RNA molecule. J. Am. Chem. Soc. 118(29), 7012-7013.Google Scholar
  99. 99.
    R. R. Breaker and G. F. Joyce (1994). A DNA enzyme that cleaves RNA. Chem. Biol. 1(4), 223-229.Google Scholar
  100. 100.
    R. R. Breaker (2000). Making catalytic DNAs. Science 290(5499), 2095-2096.Google Scholar
  101. 101.
    Y. Lu (2002). New transition metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chem. Eur. J. 84588-4596.Google Scholar
  102. 102.
    R. R. Breaker and G. F. Joyce (1995). A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 2(10), 655-660.Google Scholar
  103. 103.
    D. Faulhammer and M. Famulok (1997). Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269(2), 188-202.Google Scholar
  104. 104.
    S. W. Santoro and G. F. Joyce (1997). A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U. S. A. 94(9), 4262-4266.Google Scholar
  105. 105.
    C. R. Geyer and D. Sen (1997). Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4(8), 579-593.Google Scholar
  106. 106.
    A. Roth and R. R. Breaker (1998). An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl. Acad. Sci. U.S.A. 95(11), 6027-6031.Google Scholar
  107. 107.
    J. Li, W. Zheng, A. H. Kwon, and Y. Lu (2000). In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28(2), 481-488.Google Scholar
  108. 108.
    N. Carmi, L. A. Shultz, and R. R. Breaker (1996). In vitro selection of self-cleaving DNAs. Chem. Biol. 3(12), 1039-1046.Google Scholar
  109. 109.
    B. Cuenoud and J. W. Szostak (1995). A DNA metalloenzyme with DNA ligase activity. Nature 375(6532), 611-614.Google Scholar
  110. 110.
    Y. Wang and S. K. Silverman (2003). Deoxyribozymes that synthesize branched and lariat RNA. J. Am. Chem. Soc. 125(23), 6880-6881.Google Scholar
  111. 111.
    Y. Li and R. R. Breaker (1999). Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci. U.S.A. 96(6), 2746-2751.Google Scholar
  112. 112.
    Y. Li, Y. Liu, and R. R. Breaker (2000). Capping DNA with DNA. Biochemistry 39(11), 3106-3114.Google Scholar
  113. 113.
    Y. Li and D. Sen (1996). A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3(9), 743-747.Google Scholar
  114. 114.
    D. Faulhammer and M. Famulok (1996). The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem., Int. Ed. Engl. 35(23/24), 2837-2841.Google Scholar
  115. 115.
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640-4650.Google Scholar
  116. 116.
    R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz (2003). What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125(6), 1643-1654.Google Scholar
  117. 117.
    J. Liu and Y. Lu (2003). A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125(22), 6642-6643.Google Scholar
  118. 118.
    L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, III, R. L. Letsinger, R. Elghanian, and G. Viswanadham (2000). A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72(22), 5535-5541.Google Scholar
  119. 119.
    J. Liu and Y. Lu (2003). Improving fluorescent DNAzyme biosensors by combining inter-and intramolecular quenchers. Anal. Chem. 75(23), 6666-6672.Google Scholar
  120. 120.
    U. S. Department of Housing and Urban Development (2001). Unpublished data, 2001.Google Scholar
  121. 121.
    K. K. Luk, L. L. Hodson, J. A. O'Rouke, D. S. Smith, and W. F. Gutknecht (1993). Investigation of Test Kits for Detection of Lead in Paint, Dust, and Soil, EPA 600/R-93/085, U.S. Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  122. 122.
    W. J. Rossiter,Jr., M. G. Vangel, M. E. McKnight, and G. Dewalt (2000, March). Spot Test Kits for Detecting Lead in Household Paint: A Laboratory Evaluation, NISTIR 6398, National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
  123. 123.
    A. W. Czarnik (1995). Desperately seeking sensors. Chem. Biol. 2(7), 423-428.Google Scholar
  124. 124.
    J. Tang and R. R. Breaker (1997). Rational design of allosteric ribozymes. Chem. Biol. 4(6), 453-459.Google Scholar
  125. 125.
    D. Y. Wang, B. H. Y. Lai, and D. Sen (2002). A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J. Mol. Biol. 318(1), 33-43.Google Scholar
  126. 126.
    M. Levy and A. D. Ellington (2002). ATP-dependent allosteric DNA enzymes. Chem. Biol. 9(4), 417-426.Google Scholar
  127. 127.
    G. A. Soukup, G. A. M. Emilsson, and R. R. Breaker (2000). Altering molecular recognition of RNA aptamers by allosteric selection. J. Mol. Biol. 298(4), 623-632.Google Scholar
  128. 128.
    G. A. Soukup, E. C. DeRose, M. Koizumi, and R. R. Breaker (2001). Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7(4), 524-536.Google Scholar
  129. 129.
    D. E. Huizenga and J. W. Szostak (1995). A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2), 656-665.Google Scholar
  130. 130.
    J. Liu and Y. Lu (2004). Adenosine dependent assembly of aptazyme-functionalized gold nanoparticles and their application as a colorimetric biosensor. Anal. Chem. 76(6), 1627-1632.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana – ChampaignUrbana

Personalised recommendations