Journal of Fluorescence

, Volume 13, Issue 6, pp 489–493 | Cite as

Rapid Identification of Bacterial Species by Fluorescence Spectroscopy and Classification Through Principal Components Analysis

  • Héctor Enrique GianaEmail author
  • Landulfo SilveiraJr.
  • Renato Amaro Zângaro
  • Marcos Tadeu T. Pacheco


This work presents the development of a method for rapid bacterial identification based on the autofluorescence spectrum. It was demonstrated differences in the autofluorescence spectrum in three bacterial species and the subsequent separation, through the Principal Components Analysis (PCA) technique, in groups with high likeness, that could identify the bacteria in less than 10 min. Fluorescence spectra of 60 samples of 3 different bacterial species (Escherichia coli, EC, Enterococcus faecalis, EF and Staphylococcus aureus, SA), previously identified by automated equipment Mini API, were collected in 10 excitation wavelengths from 330 to 510 nm. The PCA technique applied to the fluorescence spectra showed that bacteria species could be identified with sensitivity and specificity higher than 90% according to differences that occur within the spectra with excitation of 410 nm and 430 nm. This work presented a method of bacterial identification of three more frequent and more clinically significant species based on the autofluorescence spectra in the excitation wavelengths of 410 and 430 nm and the classification of the spectra in three groups using PCA. The results demonstrated that the bacterial identification is very efficient with such methodology. The proposed method is rapid, ease to perform and low cost compared to standard methods.

Bacterial identification diagnosis fluorescence spectroscopy principal components analysis (PCA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Jawetz, J. L. Melnick, and E. A. Adelberg (1995). Microbiologia Médica, Guanabara Koogan, Rio de Janeiro, Brazil, pp. 35-38.Google Scholar
  2. 2.
    W. H. Nelson (1985). Instrumental Methods for Rapid Microbiological Analysis, VCH, New York, p. 22.Google Scholar
  3. 3.
    D. C. Roselle, M. Seaver, and J. D. Eversole (1998). Changes in intrinsic fluorescence during the production of viable but nonculturable Escherichia coli. J. Ind. Microbiol. Biotechnol. 20, 265-267.Google Scholar
  4. 4.
    D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins (1999). Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 599-624.Google Scholar
  5. 5.
    S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, and G. Feather (1999). Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal. Chem. Tech. 3, 221-239.Google Scholar
  6. 6.
    Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff (1999). Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy. Aerosol Sci. Tech. 31, 409-421.Google Scholar
  7. 7.
    B. C. Spector, L. Reinisch, D. Smith, and J. A. Werhaven (2000). Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model. Laryngoscope 110, 1119-1123.Google Scholar
  8. 8.
    K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, H. P. Endtz, B. Smith, R. Bennett, H. A. Bruining, and G. J. Puppels (2000). Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal. Chem. 72, 12-19.Google Scholar
  9. 9.
    T. Udelhoven, D. Naumann, and J. Schmitt (2000). Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl. Spectrosc. 54, 1471-1479.Google Scholar
  10. 10.
    L. E. Rodriguez-Saona, F. M. Khambaty, F. S. Fry, and E. M. Calvey (2001). Rapid detection and identification of bacterial strains by Fourier transform near-infrared spectroscopy. J. Agric. Food Chem. 49, 574-579.Google Scholar
  11. 11.
    G. L. Daguet (1977). Té ecnicas en Bacteriologia, Vol. 3, JIMS, Barcelona, pp. 45-50.Google Scholar
  12. 12.
    C. H. P. M. Silva (1999). Bacteriologia: Um Texto Ilustrado, Eventos, São Paulo, Brazil, p. 125.Google Scholar
  13. 13.
    R. A. Zângaro, L. Silveira Jr., R. Manoharan, G. Zonios, I. Itzkan, R. R. Dasari, J. Vam-Dam, and M. S. Feld (1996). Rapid multiexitation fluorescence spectroscopy system for in vivo tissue diagnosis. Appl. Opt. 35, 5211-5219.Google Scholar
  14. 14.
    D. Frenkel and J. Nadal (2000). Comparação de mé etodos de representaçã ao do segmento ST na detecção automática de isquemia de miocárdio. Braz. J. Biom. Eng. 16, 153-162.Google Scholar
  15. 15.
    L. Silveira Jr., S. Sathaiah, R. A. Zângaro, M. T. T. Pacheco, M. C. Chavantes, and C. A. G. Pasqualucci (2002). Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries. Lasers Surg. Med. 30, 290-297.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Héctor Enrique Giana
    • 1
    Email author
  • Landulfo SilveiraJr.
    • 2
  • Renato Amaro Zângaro
    • 2
  • Marcos Tadeu T. Pacheco
    • 2
  1. 1.Laboratório Oswaldo Cruz, Rua Santa Clara, 393, V. AdyannaCEPSão José dos Campos, SPBrazil
  2. 2.Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do ParaíbaSão José dos Campos, SPBrazil

Personalised recommendations