Energetics and Thermoregulation in Chiroptera

  • A. F. Davydov


This review deals with analysis of current experimental data obtained predominantly by foreign authors on energetics and thermoregulation in many species of the Chiroptera order in connection with their circadian and seasonal hypometabolism due to the habitation temperature conditions, type of nutrition, reproduction, and flying activity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNab, B.K., The Structure of Tropical Bat Faunas, Ecol., 1971, vol. 52, pp. 352–358.Google Scholar
  2. 2.
    McNab, B.K., Evolutionary Alternatives in the Physiological Ecology of Bats, Ecology of Bats, Thomas, H. and Kunz, T.H., Eds., Plenum Publishing Corporation, 1982, pp. 151–200.Google Scholar
  3. 3.
    Strelkov, P.P., Settled and Migratory Species of Bats in the USSR European Part, Byull. Mosk. Obshch. Ispyt. Prir., 1972, vol. 77, no. 2, pp. 27–31.Google Scholar
  4. 4.
    Kuzyakin, A.P., Letuchie myshi (The Bats), Moscow, 1950.Google Scholar
  5. 5.
    Kalabukhov, N.I., Spyachka mlekopitayushchikh (Hibernation of Mammals), Moscow, 1985.Google Scholar
  6. 6.
    Slonim, A.D., Zhivotnaya teplota i ee regulyatsiya v organisme mlekopitayushchikh (The Animal Heat and Its Regulation in the Mammalian Organism), Moscow-Leningrad, 1952.Google Scholar
  7. 7.
    Ponugaeva, A.G., The Gregarious Form of Existence in the Circadian Periodicity of Bats, Opyt izucheniya periodicheskikh izmenenii fiziologicheskikh funktsii v organizme (Experience of Studying Periodical Changes in Organism Physiological Functions), Moscow, 1949, pp. 104–115.Google Scholar
  8. 8.
    Kafor, I.S., Changes in the Blood Sugar Level and Body Temperature in Bats at Rest and in Flight, Opyt izucheniya regulyatsii fiziologicheskikh funktsii v estestvennykh usloviyakh sushchestvovaniya organizma (Experience of Studying Regulation of Physiological Functions under Natural Conditions of the Organism Existence), Moscow, 1963, vol. 6, pp. 31–34.Google Scholar
  9. 9.
    Ivanov, K.P. and Davydov, A.F., On Physiological Mechanisms of Chemical Thermoregulation in Bats, Opyt izucheniya regulyatsii fiziologicheskikh funktsii v estestvennykh usloviyakh sushchestvovaniya organizma (Experience of Studying Regulation of Physiological Functions under Natural Conditions of the Organism Existence), Moscow-Leningrad, 1963, vol. 6, pp. 179–183.Google Scholar
  10. 10.
    Bazhenova, A.F. and Tikhonova, N.S., The Circadian Rhythm of Heterothermia and Temperature Dependences of the Total and Tissue Respiration in Bats (Pipistrellus pipistrellus), Temperaturnaya kompensatsiya i povedencheskii gomeostaz (Temperature Compensation and Behavioral Homeostasis), Leningrad, 1980.Google Scholar
  11. 11.
    Henshaw, R.E., Thermoregulation in Bats, About Bats, Slaugpter, W., Ed., Dallas, 1970, pp. 188–232.Google Scholar
  12. 12.
    Dwyer, P.D., Temperature Regulation and Cave-Dwelling in Bats: An Evolutionary Perspective, Mammalia, 1971, vol. 35, pp. 424–455.Google Scholar
  13. 13.
    Kulzer, E., Thermoregulation bei Fledermausen (Chiroptera) aus Verschiedenen Klimazonen, Z. Vergl. Physiol., 1965, vol. 50, no. 1, pp. 1–34.Google Scholar
  14. 14.
    Gaisler, J.A., A Tentative Ecological Classification of Colonies of the European Bats, Lynx, 1966, no. 6, pp. 35–39.Google Scholar
  15. 15.
    Bartholomew, G.A., Leitner, Ph., and Nelson, J., Body Temperature, Oxygen Consumption, and Heart Rate in Three Species of Australian Flying Foxes, Physiol. Zool., 1964, vol. 37, no. 2, pp. 179–198.Google Scholar
  16. 16.
    Henshaw, R.E. and Folk, G.E., Jr., Relation of Thermoregulation to Seasonally Changing Microclimate in Two Species of Bats (Myotis lucifugus and M. sodalis), Physiol. Zool., 1966, vol. 39, no. 3, pp. 223–236.Google Scholar
  17. 17.
    Morrison, P. and McNab, B.K., Temperature Regulation in Some Brazilian Phyllostomid Bats, Comp. Biochem. Physiol., 1967, vol. 21, no. 1, pp. 207–221.Google Scholar
  18. 18.
    Kulzer, E., Thermoregulation bei Wustenfledermausen, Natur und Museum, 1966, vol. 96, no. 6, pp. 242–253.Google Scholar
  19. 19.
    Herreid, C.F., Temperature Regulation, Temperature Preference and Tolerance, and Metabolism of Young and Adult Free Tailed Bats, Physiol. Zool., 1967, vol. 40, no. 1, pp. 1–22.Google Scholar
  20. 20.
    Stones, R.C. and Wibers, J.E., Temperature Regulation in the Little Brown Bat (Myotis lucifugus), Mammal. Hibernat., Oliver, B., Ed., Edinburgh, London, 1967, vol. 3, pp. 97–109.Google Scholar
  21. 21.
    Hurst, R.N. and Wieberts, J.E., Thermogenic Patterns in the Little Brown Bats Myotis lucifugus, J. Mammal., 1968, vol. 49, pp. 793–799.Google Scholar
  22. 22.
    Speakman, J.R. and Racey, P.A., Hibernal Ecology of the Pipistrelle Bat: Energy Expenditure, Water Requirements and Mass Loss, Implications to Survival and the Function of Winter Emergence Flights, J. Anim. Ecol., 1989, vol. 58, no. 3, pp. 797–813.Google Scholar
  23. 23.
    Studier, E.H. and O'Farrell, M.J., Biology of Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae). I. Thermoregulation, Comp. Biochem. Physiol., 1972, vol. 41A, pp. 567–595.Google Scholar
  24. 24.
    Holyoak, G.W. and Stones, R.C., Temperature Regulation of the Little Brown Bat, Myotis lucifugus after Acclimation at Various Ambient Temperatures, Comp. Biochem. Physiol., 1971, vol. 39A, pp. 413–420.Google Scholar
  25. 25.
    Averalo, F., Burgo, M.J., del Hoyp, N., and Lopez-Luna, P., Seasonal Variations in the Lipid Composition of the White and Brown Tissues in the Bat Pipistrellus pipistrellus, Comp. Biochem. Physiol., 1990, vol. 95B, pp. 535–539.Google Scholar
  26. 26.
    Thomas, D.W., Dorais, M., and Bergeron, J.M., Winter Energy Budget and Coast of Arousals for Hibernating Little Brown Bats Myotis lucifugus, J. Mammal., 1990, vol. 71, pp. 475–479.Google Scholar
  27. 27.
    Kurta, A. and Kunz, T.H., Roosting Metabolic Rate and Body Temperature of Male Little Brown Bats (Myotis lucifugus) in Summer, J. Mammal., 1998, vol. 69, pp. 645–651.Google Scholar
  28. 28.
    Jansky, L. and Hiyek, J., Thermogenesis of the Bat Myotis myotis Borkh, Physiol. Bohemosl., 1961, vol. 10, pp. 283–289.Google Scholar
  29. 29.
    Smalley, R.L. and Dryer, R.L., Brown Fat: Thermogenic Effect during Arousal from Hibernation in the Bat, Science, 1963, vol. 140, pp. 1333–1334.Google Scholar
  30. 30.
    Dryer, R.L. and Paulsrud, J.R., Effect of Arousal on ATP Levels in Bats, Feder. Proc., 1966, vol. 25, pp. 1293–1296.Google Scholar
  31. 31.
    Fisher, K.C. and Manery, J.S., Water and Electrolyte Metabolism in Heterotherms, Mammal. Hibernat., Boyd, O., Ed., Edinburgh-London, 1967, vol. 3, pp. 233–279.Google Scholar
  32. 32.
    Kurta, A., Bell, G.P., Nagy, K.A., and Kunz, T.H., Energetics of Pregnancy and Lactation in Freeranging Little Brown Bats (Myotis lucifugus), Physiol. Zool., 1989, vol. 62, pp. 804–818.Google Scholar
  33. 33.
    Andet, D. and Fenton, M.B., Heterothermy and the Use of Torpor by the Bat Eptesicus fuscus (Chiroptera: Vespertilionidae): A Field Study, Physiol. Zool., 1988, vol. 61, pp. 197–204.Google Scholar
  34. 34.
    Weigold, H., Jugendentwicklung der Temperaturregulation bei der Mausohrfledermaus Myotis myotis (Borkhausen, 1797), J. Comp. Physiol., 1973, vol. 85, pp. 169–212.Google Scholar
  35. 35.
    Noll, U.G., Postnatal Growth and Development of Thermogenesis in Rousettus aegyptiacus, Comp. Biochem. Physiol., 1979, vol. 63A, pp. 89–93.Google Scholar
  36. 36.
    Kluger, M.J. and Heath, J.E., Thermoregulatory Responses to Preoptican Anterior Hypothalamic Heating and Cooling in the Bat Eptesicus fuscus, Z. Vergl. Physiol., 1971, vol. 74, no. 3, pp. 340–352.Google Scholar
  37. 37.
    Carpenter, R.E., Flight Physiology of Intermediate Sizes Fruit Bats (Pteropodidae), J. Exp. Biol., 1986, vol. 120, pp. 79–103.Google Scholar
  38. 38.
    Thomas, S.P. and Suthers, R.A., The Physiology and Energetics of Bat Flight, Exp. Biol., 1972, vol. 57, pp. 317–335.Google Scholar
  39. 39.
    Thomas, D.W., Cloutier, D., and Gagne, D., Arrhythmic Breathing Little Brown Bats (Myotis lucifugus), J. Exp. Biol., 1990, vol. 149, pp. 395–406.Google Scholar
  40. 40.
    Szewczak, J.M. and Jackson, D.C., Apneic Oxygen Uptake in the Torpid Bat, Eptesicus fuscus, J. Exp. Biol., 1992, vol. 173, pp. 217–227.Google Scholar
  41. 41.
    Pastukhov, Yu. F., Sleep and Torpor. Sleep Mechanisms, Itogi Nauki Tekhniki. Ser. Fiziol. Cheloveka i Zhivotnykh, 1986, vol. 31, pp. 59–100.Google Scholar
  42. 42.
    Geiser, F. and Ruf, T., Hibernation Versus Daily Torpor in Mammals and Birds: Physiological Variables and Classification of Torpor Patterns, Physiol. Zool., 1995, vol. 68, no. 6, pp. 935–966.Google Scholar
  43. 43.
    Zepelin, H. and Rechtschaffen, A., Mammalian Sleep, Longevity, and Energy Metabolism, Brain, Behav. Evol., 1974, vol. 10, no. 6, pp. 425–470.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. F. Davydov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations