Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 10, pp 1901–1919 | Cite as

A Resistant Predator and Its Toxic Prey: Persistence of Newt Toxin Leads to Poisonous (Not Venomous) Snakes

  • Becky L. Williams
  • Edmund D. BrodieJr.
  • Edmund D. BrodieIII
Article

Abstract

The Common Garter Snake (Thamnophis sirtalis) preys upon the Rough-skinned Newt (Taricha granulosa), which contains the neurotoxin tetrodotoxin (TTX) in the skin. TTX is toxic, large quantities are present in a newt, and highly resistant snakes have the ability to ingest multiple newts; subsequently snakes harbor significant amounts of active toxin in their own tissues after consuming a newt. Snakes harbor TTX in the liver for 1 mo or more after consuming just one newt, and at least 7 wk after consuming a diet of newts. Three weeks after eating one newt, snakes contained an average of 42 μg of TTX in the liver. This amount could severely incapacitate or kill avian predators, and mammalian predators may be negatively affected as well.

Tarichagranulosa Thamnophissirtalis toxicity resistance chemical defense tetrodotoxin aposematism coevolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Akizawa, T., Yasuhara, T., Kano, R., and Nakajima, T. 1985. Novel polyhydroxylated car-diac steroids in the nuchal glands of the snake, Rhabdophis tigrinus. Biomed. Res. 6:437–441.Google Scholar
  2. Arnold, S.J. and Bennett, A. F. 1984. Behavioural variation in natural populations. III: Antipredator displays in the garter snake Thamnophis radix. Anim. Behav. 32:1108–1118.Google Scholar
  3. Brodie, E. D., III, and Brodie, E. D., JR. 1990. Tetrodotoxin resistance in garter snakes: An evolu-tionary response of predators to dangerous prey. Evolution 44:651–659.Google Scholar
  4. Brodie, E. D., III, and Brodie, E. D., JR. 1999a. The cost of exploiting poisonous prey: Evolutionary tradeoffs in a predator-prey arms race. Evolution 53:626–631.Google Scholar
  5. Brodie, E. D., III, and Brodie, E. D., JR. 1999b. Predator-prey arms races and dangerous prey. Bioscience 49:557–568.Google Scholar
  6. Brodie, E. D., III, and Janzen, F. J. 1995. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9:186–190.Google Scholar
  7. Brodie, E. D., JR. 1968. Investigations on the skin toxin of the adult rough-skinned newt, Tar i cha granulosa. Copeia 1968:307–313.Google Scholar
  8. Brodie, E. D., JR. and Ducey, P. K. 1991. Antipredator skin secretions of some tropical salamanders (Bolitoglossa) are toxic to snake predators. Biotropica 23:58–62.Google Scholar
  9. Brodie, E. D., JR., Formanowicz, D.R., JR., and BRODIE, E. D., III. 1991. Predator avoidance and antipredator mechanisms: Distinct pathways to survival. Ethol. Ecol. Evol. 3:73–77.Google Scholar
  10. Brodie, E. D., JR., Ridenhour, B.J., and Brodie, E. D., III. 2002. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56:2067–2082.Google Scholar
  11. Brodie, E. D., JR. and Tumbarello, M. S. 1978. The antipredator functions of Dendrobates auratus (Amphibia, Anura, Dendrobatidae) skin secretion in regard to a snake predator (Thamnophis).J. Herpetol. 12:264–265.Google Scholar
  12. Brower, L.P., Pough, F. H., and Meck, H. R. 1970. Theoretical investigations of automimicry, I. Single trial learning. Proc. Natl. Acad. Sci. U.S.A. 66:1059–1066.Google Scholar
  13. Cembella, A.D. and Desbiens, M. 1994. Fate of paralytic shellfish toxins in the American lobster Homarus americanus. J. Shellfish Res. 13:302.Google Scholar
  14. Cuthill, I.C. and Bennett, A. T. D. 1993. Mimicry and the eye of the beholder. Proc. R. Soc. Lond. Ser. B 253:203–204.Google Scholar
  15. Daly, J.W., Garaffo, H.M., Hall, G.S.E., and Cover, J. F. 1997. Absence of skin alkaloids in captive-raised Madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135.Google Scholar
  16. Duellman, W.E., and Trueb, L. 1986. Biology of the Amphibians. McGraw-Hill Book, New York.Google Scholar
  17. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.Google Scholar
  18. Fitch, H. S. 1965. An ecological study of the garter snake, Thamnophis sirtalis. Univ. Kans. Publ. Mus. Nat. Hist. 15:493–564.Google Scholar
  19. Geffeney, S., Ruben, P.C., Brodie, E. D., JR., and Brodie, E. D., III. 2002. Mechanisms of adaptation in a predator-prey arms race: TTX resistant sodium channels. Science 297:1336–1339.Google Scholar
  20. Gittleman, J.L. and Harvey, P. H. 1980. Why are distasteful prey not cryptic? Nature (Lond.) 286:149–150.Google Scholar
  21. Gittleman, J.L., Harvey, P. H., and Greenwood, P. J. 1980. The evolution of conspicuous col-oration: Some experiments in bad taste. Anim. Behav. 28:897–899.Google Scholar
  22. Hancock, J. and Kushlan, J. 1984. The Herons Handbook. Nicholas Enterprises/London Editions, London.Google Scholar
  23. Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2002. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 40:1149–1153.Google Scholar
  24. Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2003. Tetrodotoxin levels in the eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. Chem. Ecol. 29:1701–1711.Google Scholar
  25. Hanifin, C.T., Brodie, E. D., III, and Brodie, E. D., JR. 2004. A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa. Toxicon 43:243–249.Google Scholar
  26. Hanifin, C.T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E. D., III, and Brodie, E. D., JR. 1999. Toxicity of dangerous prey: Variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161–2175.Google Scholar
  27. Hensel, J.L., JR. and Brodie, E.D. JR. 1976. An experimental study of aposematic coloration in the salamander Plethodon jordani. Copeia 1976:59–65.Google Scholar
  28. Hunt, S., Cuthill, I.C., Swaddle, J.P., and Bennett, A. T. D. 1997. Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Anim. Behav. 54:1383–1392.Google Scholar
  29. Ishihara, F. 1918. —¨ Uber die physiologishen wirkungen des fugutoxins. Mittheil. Med. Fak. Tokyo Univ. 20:375–426.Google Scholar
  30. Kao, C. Y. 1966. Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18:997–1049.Google Scholar
  31. Kawabata, T. 1978. Assay method for tetrodotoxin, pp. 223–241, in Food Hygiene Examination Manual, Vol. II. Environmental Health Bureau, Japan Food Hygiene Association, Tokyo, Japan.Google Scholar
  32. Kawasaki, H., Nagata, T., and Kanoh, S. 1973. An experience on the biological assay of the toxicity of imported Fugu (tetrodon). Shokuhin Eiseigaku Zasshi 14(2):186–190.Google Scholar
  33. Kodama, M., Noguchi, T., Maruyama, J., Ogata, T., and Hashimoto, K. 1983. Release of tetrodotoxin and paralytic shellfish poison from puffer liver by RNase. J. Biochem. 93:243–247.Google Scholar
  34. Maddocks, S. A., Church, S.C., and Cuthill, I. C. 2001. The effects of the light environment on prey choice by zebra finches. J. Exp. Biol. 204:2509–2515.Google Scholar
  35. Medinsky, M.A. and Klaassen, C. D. 1996. Toxicokinetics, pp. 187–198, in C. D. Klaassen (ed.). Casarett and Doull's Toxicology: The Basic Science of Poisons. McGraw-Hill, New York, NY.Google Scholar
  36. Mobley, J.A. and Stidham, T. A. 2000. Great Horned Owl death from predation of a toxic California newt. Wilson Bull. 112:563–564.Google Scholar
  37. Mori, A., Layne, D., and Burghardt, G. M. 1996. Description and preliminary analysis of an-tipredator behavior of Rhabdophis tigrinus tigrinus, a colubrid snake with nuchal glands. Jpn. J. Herpetol. 16:94–107.Google Scholar
  38. Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin-tetrodotoxin: A potent neurotoxin. Science 144:1100–1110.Google Scholar
  39. Myers, C.W., Daly, J.W., and Malkin, B. 1978. A dangerously toxic new frog (Phyllobates) used by Ember´ a Indians of western Columbia, with discussion of blowgun fabrication and dart poisoning. Bull. Am. Mus. Nat. Hist. 161:307–365.Google Scholar
  40. Nagashima, Y., Toyoda, M., Hasobe, M., Shimakura, K., and Shiomi, K. 2003. In vitro accumu-lation of tetrodotoxin in pufferfish liver tissue slices. Toxicon 41:569–574.Google Scholar
  41. Narahasi, T., Moore, J.W., and Poston, R. N. 1967. Tetrodotoxin derivatives: Chemical structure and blockage of nerve membrane conductance. Science 156:976–978.Google Scholar
  42. Nicolaus, L. K., Cassel, J.F., Carlson, R.B., and Gustavson, C. R. 1983. Taste-aversion conditioning of crows to control predation on eggs. Science 220:212–214.Google Scholar
  43. Nowak, R. M. 1991. Walker's Mammals of the World, Vol. II. Johns Hopkins University Press, Baltimore, MD.Google Scholar
  44. Ogura, Y. 1958. Some recent problems on fugu-toxin, particularly on crystalline tetrodotoxin. Seitai No Kagaku 9:281–287.Google Scholar
  45. Pfennig, D.W., Harcombe, W.R., and Pfennig, K. S. 2001. Frequency-dependent batesian mimicry-Predators avoid look-alikes of venomous snakes only when the real thing is around. Nature 410:323.Google Scholar
  46. Rapp, W.F., JR. 1954. American Bittern eats snake. Nebr. Bird Rev. 22:I.Google Scholar
  47. Richardson, S. A., Potter, A.E., Lehmkuhl, K.L., Mazaika, R., Mcfadzen, M.E., and Estes, R. 2001. Prey of Ferrunginous Hawks breeding in Washington. Northwest. Nat. 82:58–64.Google Scholar
  48. Roper, T.J. and Redston, S. 1987. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Anim. Behav. 35:739–747.Google Scholar
  49. Roper, T.J. and Wistow, R. 1986. Aposematic colouration and avoidance learning in chicks. Q. J. Exp. Psychol. 38B:141–149.Google Scholar
  50. Rossman, D. A., Ford, N.B., and Seigel, R. A. 1996. The Garter Snakes Evolution and Ecology. University of Oklahoma Press, Norman, OK.Google Scholar
  51. Saporito, R. A., Donnelly, M. A., Hoffman, R.L., Garraffo, H.M., and Daly, J. W. 2003. A siphonotid millipede (Rhinotus) as the source of spiropyrrolizidine oximes of dendrobatid frogs. J. Chem. Ecol. 29:2781–2786.Google Scholar
  52. SAS INSTITUTE INC. 1999. SAS Software, Version 8 of the SAS System for Windows Copyright© SAS Software1999-2000. SAS Institute Inc., Cary, NC.Google Scholar
  53. Schuler, W. and Hesse, E. 1985. On the function of warning coloration: A black and yellow pattern inhibits prey-attack by naive domestic chicks. Behav. Ecol. Sociobiol. 16:249–255.Google Scholar
  54. Shine, R., Lemaster, M.P., Moore, I.T., Olsson, M.M., and Mason, R. T. 2001. Bumpus in the snake den: Effects of sex, size, and body condition on mortality of red-sided garter snakes. Evolution 55:598–604.Google Scholar
  55. Shine, R., Olsson, M.M., Lemaster, M.P., Moore, I.T., and Mason, R. T. 2000. Effects of sex, body size, temperature, and location on the antipredator tactics of free-ranging gartersnakes (Thamnophis sirtalis, Colubridae). Behav. Ecol. 11:239–245.Google Scholar
  56. Sibley, D. A. 2000. The Sibley Guide to Birds. Alfred A. Knopf, New York, NY.Google Scholar
  57. Sill´en-Tullberg, B. 1985. The significance of coloration per se, independent of background, for predator avoidance of aposematic prey. Anim. Behav. 33:1382–1384.Google Scholar
  58. Smith, H.M. and White, F. N. 1955. Adrenal enlargement and its significance in the Hognose snakes (Heterodon). Herpetologica 11:137–144.Google Scholar
  59. Terrick, T. D., Mumme, R.L., and Burghardt, G. M. 1995. Aposematic coloration enhances chemosensory recognition of noxious prey in the garter snake Thamnophis radix. Anim. Behav. 49:857–866.Google Scholar
  60. Thompson, J. N. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. Am. Nat. 156:156–174.Google Scholar
  61. Williams, B.L., Brodie, E. D., JR., and Brodie, E. D., III. 2002. Comparisons between toxic effects of tetrodotoxin administered orally and by intraperitoneal injection to the garter snake Thamnophis sirtalis. J. Herpetol. 36:112–115.Google Scholar
  62. Williams, B.L., Brodie, E. D., JR., and Brodie, E. D., III. 2003. Coevolution of deadly toxins and predator resistance: Self-assessment of resistance by garter snakes leads to behavioral rejection of toxic newt prey. Herpetologica 59:155–163.Google Scholar
  63. Yotsu, M., Endo, A., and Yasumoto, T. 1989. An improved tetrodotoxin analyzer. Agric. Biol. Chem. 53:893–895.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Becky L. Williams
    • 1
  • Edmund D. BrodieJr.
    • 2
  • Edmund D. BrodieIII
    • 3
  1. 1.Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Department of BiologyUtah State University, LoganUtahUSA
  3. 3.Department of BiologyIndiana University, BloomingtonIndianaUSA

Personalised recommendations