Journal of Chemical Ecology

, Volume 30, Issue 8, pp 1547–1564 | Cite as

Behavioral Response of Lygus hesperus to Conspecifics and Headspace Volatiles of Alfalfa in a Y-Tube Olfactometer

  • J. L. Blackmer
  • C. Rodriguez-Saona
  • J. A. Byers
  • K. L. Shope
  • J. P. Smith


The western tarnished plant bug, Lygus hesperus Knight, feeds and develops on a variety of weeds in the spring, with later generations moving to alfalfa and cotton where severe damage to reproductive structures can occur. A synthetic attractant for monitoring or mass-trapping L. hesperus, or the identification of potential attractants for natural enemies, would be useful tools for integrated pest management programs. Studies investigated the response of naive and experienced fifth-instar and adult L. hesperus to odors associated with conspecifics and alfalfa, Medicago sativa L. Fifth-instar L. hesperus responded to all plant/insect combinations, whereas female L. hesperus only responded preferentially to vegetative and flowering alfalfa where conspecifics had fed for 24–72 hr, and to vegetative alfalfa where conspecifics were added approximately 30 min before the test began. Males were not attracted to headspace volatiles from any of the alfalfa treatments. Analysis of headspace volatiles showed that (E)-2-hexanal, (Z)-3-hexen-1-ol, α-pinene, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, limonene, (Z)-ocimene, (E)-β-ocimene, linalool, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (E, E)-α-farnesene are emitted from both vegetative and flowering alfalfa. Indole and (3E, 7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene were only detected in flowering alfalfa. Damage to alfalfa by L. hesperus increased emissions of (Z)-ocimene, (E)-β-ocimene, (E)-β-caryophyllene, and (E, E)-α-farnesene, while β-pinene, myrcene, methyl salicylate, and (3E, 7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene were only detected from damaged plants. Thus, individual or mixtures of these alfalfa volatiles may be useful as attractants for capturing nymphs and adult females of L. hesperus in the field.

Miridae western tarnished plant bug Y-tube olfactometer alfalfa host location herbivore-induced volatiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agelopoulos, N. G. and Keller, M. A. 1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassicae (Cruciferae) I: Sources of infochemicals. J. Chem. Ecol. 20:1725-1748.Google Scholar
  2. Agusti, N. and Cohen, A. C. 2000. Lygus hesperus and L. lineolaris (Hemiptera: Miridae), phy-tophages, zoophages, or omnivores: Evidence of feeding adaptations suggested by the salivary and midgut digestive enzymes. J. Entomol. Sci. 35:176-186.Google Scholar
  3. Aldrich, J. R., Lusby, W. R., Kocansky, J. P., Hoffman, M. P., Wilson, L. T., and Zalom, F. G. 1988. Lygus bug pheromone vis-à-vis stink bugs. Proc. Beltwide Cotton Conf. 213-216.Google Scholar
  4. Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J., and Woodcock, C. M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97:9329-9334.Google Scholar
  5. Chinta, S., Dickens, J. C., and Aldrich, J. R. 1994. Olfactory reception of potential pheromones and plant odors by tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J. Chem. Ecol. 20:3251-3267.Google Scholar
  6. Dicke, M. and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148-165.Google Scholar
  7. Groot, A. T., Drijfhout, F. P., Heijboer, A., Van Beek, T. A., and Visser, J. H. 2001. Disruption of sexual communication in the mirid bug Lygocoris pabulinus by hexyl butanoate. Agric. Forest Entomol. 3:49-55.Google Scholar
  8. Groot, A. T., Timmer, R., Gort, G., Lelyveld, G. P., Drijfhout, F. P., Van Beek, T. A., and Visser, J. H. 1999. Sex-related perception of insect and plant volatiles in Lygocoris pabulinus. J. Chem. Ecol. 25:2357-2371.Google Scholar
  9. Gueldner, R. C. andPARROTT, W. L. 1978. Volatile constituents of the tarnished plant bug. Insect Biochem. 8:389-391.Google Scholar
  10. Gupta, A. P. 1961. A critical review of the studies of the so-called stink or repugnatorial glands of Heteroptera with further comments. Can. Entomol. 93:482-486.Google Scholar
  11. Heath, R. R. and Manukian, A. 1994. An automated system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593-607.Google Scholar
  12. Hedin, P. A., Parrott, W. L., Tedders, W. L., and Reed, D. K. 1985. Field responses of the tarnished plant bug to its own volatile constituents. J. Miss. Acad. Sci. 30:63-66.Google Scholar
  13. Ho, H. and Millar, J. G. 2002. Identification, electroantennogram screening, and field bioassays of volatile chemicals from Lygus hesperus Knight (Heteroptera: Miridae). Zool. Stud. 41:311-320.Google Scholar
  14. Landis, B. J. and Fox, L. 1972. Lygus bugs in eastern Washington: Color preference and winter activity. Environ. Entomol. 1:464-465.Google Scholar
  15. Leigh, T. F. 1976. Detrimental effect of Lygus feeding on plants, p. 38, in D. R. Scott and L. E. O'Keeffe (eds.). Lygus Bug: Host Plant Interactions. University Press of Idaho, Moscow, Idaho.Google Scholar
  16. Leigh, T. F., Kerby, T. A., and Wynholds, P. F. 1988. Cotton square damage by the plant bug, Lygus hesperus (Hemiptera: Heteroptera: Miridae), and abscission rates. J. Econ. Entomol. 81:1328-1337.Google Scholar
  17. Loper, G. M. and Lapioli, A. M. 1971. Photoperiodic effects on the emanation of volatiles from alfalfa (Medicago sativa L.) florets. Plant Physiol. 49:729-732.Google Scholar
  18. Marletto, F., Manino, A., and Barbero, R. 1985. Indagini sui pronubi in coltivazioni di erba medica per la produzione di seme. Apicolt. Mod. 76:95-102.Google Scholar
  19. Mattiacci, L., AmbÜhl Rocca, B., Scascighini, H., D'alessandro, M., Hern, A., and Dorn, S. 2001. Systemically induced plant volatiles emitted at the time of ″danger.″ J. Chem. Ecol. 27:2233-2252.Google Scholar
  20. Mauney, J. R. and Henneberry, T. J. 1984. Causes of square abscission in cotton in Arizona. Crop Sci. 24:1027-1030.Google Scholar
  21. Mclaughlin, J. R. 1998. The status of Lygus pheromone research. Proc. Beltwide Cotton Conf. Vol. 2:938-940.Google Scholar
  22. Nist. 1995. Mass Spectral Library on CD-rom, Version 1.0. NIST, Gaithersburg, MD.Google Scholar
  23. ParÉ, P. W. and Tumlinson, J. H. 1998. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521-526.Google Scholar
  24. Pecetti, L. and Tava, A. 2000. Effect of flower color and sampling time on volatile emanation in alfalfa flowers. Crop Sci. 40:126-130.Google Scholar
  25. Powell, W., Pennachio F., Poppy, G. M., and Tremblay, E. 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidinae). Biol. Control 11:104-112.Google Scholar
  26. Rodriguez-Saona, C., Crafts-Brandner, S. J., ParÉ, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679-695.Google Scholar
  27. Rodriguez-Saona, C., Crafts-Brandner, S. J., Williams, L., III, and PARÉ, P. W. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J. Chem. Ecol. 28:1733-1747.Google Scholar
  28. Scott, D. R. 1977. An annotated listing of host plants of Lygus hesperus Knight. ESA Bull. 23:19-22.Google Scholar
  29. Sevacherian, V. and Stern, V. M. 1974. Host plant preferences of Lygus bugs in alfalfa-interplanted cotton fields. Environ. Entomol. 3:761-766.Google Scholar
  30. Sevacherian, V. and Stern, V. M. 1975. Movements of Lygus bugs between alfalfa and cotton. Environ. Entomol. 4:163-165.Google Scholar
  31. Strong, F. E. 1970. Physiology of injury caused by Lygus hesperus. J. Econ. Entomol. 63:808-814.Google Scholar
  32. Systat, 1998. SPSS Science, Version 9. Chicago, IL.Google Scholar
  33. Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 207:146-152.Google Scholar
  34. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251-1253.Google Scholar
  35. TURLINGS, T. C. J., WÄckers, F. L., Vet, L. E. M., Tumlinson, J. H., and Lewis, W. J. 1993. Learning of host-finding cues by Hymenopterous parasitoids, pp. 51-78, in D.R. Papaj and A.C. Lewis (eds.). Insect Learning. Chapman & Hall, New York.Google Scholar
  36. Wheeler, A. G., Jr. 1976. Lygus bugs as facultative predators, pp. 28-35, in D. R. Scott and O'Keeffe, L. E. (eds.). Lygus Bug: Host Plant Interactions. University Press of Idaho, Moscow, Idaho.Google Scholar
  37. Whitbey, R. M. 1999. Green bean extract-induced oviposition site preference in laboratory reared western tarnished plant bug (Heteroptera: Miridae). Environ. Entomol. 28:201-204.Google Scholar
  38. Zar, J. H. 1984. Biostatistical Analysis. Prentice Hall, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • J. L. Blackmer
    • 1
  • C. Rodriguez-Saona
    • 1
  • J. A. Byers
    • 1
  • K. L. Shope
    • 1
  • J. P. Smith
    • 1
  1. 1.Western Cotton Research Laboratory, USDA-ARSArizonaUSA

Personalised recommendations