Journal of Chemical Ecology

, Volume 30, Issue 6, pp 1285–1288 | Cite as

Floral CO2 Reveals Flower Profitability to Moths

  • Corinna Thom
  • Pablo G. Guerenstein
  • Wendy L. Mechaber
  • John G. Hildebrand

Abstract

The hawkmoth Manducasexta(Lepidoptera: Sphingidae), an experimentally favorable Lepidopteran that is highly sensitive to carbon dioxide (CO2), feeds on the nectar of a range of flowering plants, such as Datura wrightii (Solanaceae). Newly opened Datura flowers give off dramatically elevated levels of CO2 and offer ample nectar. Thus, floral CO2 emission could indicate food-source profitability. This study documents that foraging Manduca moths prefer surrogate flowers that emit high levels of CO2, characteristic of newly opened Datura flowers. We show for the first time that CO2 may play an important role in the foraging behavior of nectar-feeding insects.

Manduca sexta Daturawrightii CO2 labial-palp pit organ insect-plant interactions foraging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Guerenstein, P. G., Christensen, T. A., and Hildebrand, J. G. 2002. Sensory processing of environmental CO2 information in the moth nervous system. Chem. Senses 27: A87.Google Scholar
  2. Guerenstein, P. G., Yepez, E. A., van Haren, J., Williams, D. G., and Hildebrand, J. G. 2004. Floral CO2 emission may indicate food abundance to nectar-feeding moths. Naturwissenschaften, in press.Google Scholar
  3. IPCC. 2001. Climate Change 2001: The Scientific Basis (Report of Working Group 1 of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2001).Google Scholar
  4. Kent, K. S., Harrow, I. D., Quartararo, P., and Hildebrand, J. G. 1986. An accessory olfactory pathway in Lepidoptera: The labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tiss. Res. 245:237–245.Google Scholar
  5. Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., Pregitzer, K. S., Hendrey, G. R., Dickson, R. E., Zak, D. R., Oksanen, E., Sober, J., Harrington, R., and Karnosky, D. F. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O-3. Nature 420:403–407.PubMedGoogle Scholar
  6. Stange, G. 1996. Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients, pp. 223–253 in Stanhill, G. (ed.). Advances in Bioclimatology, Vol. 4. Springer, Berlin.Google Scholar
  7. Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth Cactoblastis cactorum. Oecologia 110:539–545.Google Scholar
  8. Stange, G. and Stowe, S. 1999. Carbon dioxide sensing structures in terrestrial arthropods. Microsc. Res. Techn. 47:416–427.Google Scholar
  9. Stange, G. and Wong, C. 1993. Moth response to climate. Nature 365:6.Google Scholar
  10. Thom, C., Guerenstein, P. G., Yepez, E., Mechaber, W. L., van Haren, J., Hildebrand, J., and Williams, D. 2003. CO2 emission by Datura flowers and its significance for foraging Manduca sexta moths. Chem. Senses 28:A25.Google Scholar
  11. Tolbert, L. P., Matsumoto, S. G., and Hildebrand, J. G. 1983. Development of synapses in the antennal lobes of the moth Manduca sexta during metamorphosis. J. Neurosci. 3:1158–1175.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Corinna Thom
    • 1
  • Pablo G. Guerenstein
    • 1
  • Wendy L. Mechaber
    • 1
  • John G. Hildebrand
    • 1
  1. 1.Arizona Research Laboratories, Division of NeurobiologyUniversity of ArizonaTucsonUSA

Personalised recommendations