Journal of Chemical Ecology

, Volume 30, Issue 5, pp 1067–1082

Allelochemicals of Polygonella myriophylla: Chemistry and Soil Degradation

  • Jeffrey D. Weidenhamer
  • John T. Romeo
Article

Abstract

Gallic acid and hydroquinone have been identified as the major allelochemicals of the known allelopathic plant Polygonella myriophylla. Both of these compounds occur in the foliage as glycosides. Quercetin and rhamnetin were identified as the major flavonoid constituents, but in much lower concentration. The behavior of gallic acid, hydroquinone, the hydroquinone glycoside arbutin, and benzoquinone in sterile and nonsterile soil from beneath Polygonella was investigated. Sterilization effectively stabilized arbutin, hydroquinone, and gallic acid. Concentrations of benzoquinone rapidly diminished in sterilized soil, and the compound was almost completely gone after 7 days. In nonsterile soils, all four compounds degraded rapidly. The order of persistence was hydroquinone > benzoquinone > gallic acid > arbutin. Persistence was rate-dependent. Arbutin degraded to hydroquinone, and benzoquinone formed as a degradation product of hydroquinone. Hydroquinone was also observed as a degradation product of benzoquinone. Benzoquinone degrades rapidly by nonmicrobial oxidative processes. These results support the hypothesis that microbial and nonmicrobial oxidative transformations of soil allelochemicals are crucial in mediating the allelopathic effects of Polygonella myriophylla.

Polygonella myriophylla allelopathy arbutin benzoquinone gallic acid hydroquinone sand pine scrub 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Blum, U. 1997. Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J. Chem. Ecol. 23:347–362.Google Scholar
  2. Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24:685–708.Google Scholar
  3. Blum, U. and Shafer, S. R. 1988. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20:793–800.Google Scholar
  4. Blum, U., Shafer, S. R., and Lehman, M. E. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit. Rev. Plant Sci. 18:673–693.Google Scholar
  5. Britton, G. and Haslam, E. 1965. Gallotannins. Part XII. Phenolic constituents of Arctostaphylos uva-ursi L. Spreng. J. Chem. Soc. 7312–7319.Google Scholar
  6. Chou, C. H. and Muller, C. H. 1972. Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. Am. Midl. Nat. 88:324–347.Google Scholar
  7. Dalton, B. R., Blum, U., and Weed, S. B. 1989. Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol. Biochem. 21:1011–1018.Google Scholar
  8. Dalton, B. R., Weed, S. B., and Blum, U. 1987. Plant phenolic acids in soils: A comparison of extraction procedures. Soil Sci. Soc. Am. J. 51:1515–1521.Google Scholar
  9. Fischer, N. H., Williamson, G. B., Weidenhamer, J. D., and Richardson, D. R. 1994. In search of allelopathy in the Florida scrub: The role of terpenoids. J. Chem. Ecol. 20:1355–1380.Google Scholar
  10. Flaig, W., Salfeld, J. C., and Haider, K. 1963. Intermediate stages in the formation of natural humic acids and of comparable synthetic compounds. Landwirtsch Forsh. 16:85–96.Google Scholar
  11. Haddock, E. A., Gupta, R. K., Al-Shafi, S. M. K., and Haslam, E. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Introduction. Naturally occurring galloyl esters. J. Chem. Soc. Perkins Trans. I:2515–2524.Google Scholar
  12. Harborne, J. B. 1984. Phytochemical Methods: A Guide to Modern Methods of Plant Analysis, 2nd edn. Chapman and Hall, London.Google Scholar
  13. Haslam, E. 1965. Galloyl esters in the Aceraceae. Phytochemistry 4:495–498.Google Scholar
  14. Haslam, E., Naumann, M. O., and Britton, G. 1964. Phenolic constituents of Vaccinium vitis idaea L. J. Chem. Soc. 5649–5654.Google Scholar
  15. Hogan, M. E. and Manners, G. D. 1990. Allelopathy of small everlasting (Antennaria microphylla): Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture. J. Chem. Ecol. 16:931–939.Google Scholar
  16. Kaminsky, R. 1981. The microbial origin of the allelopathic potential of Adenostoma fasciculatum H. & A. Ecol. Monogr. 51:365–382.Google Scholar
  17. Lehle, F. R. and Putnam, A. R. 1983. Allelopathic potential of sorghum (Sorghum bicolor): Isolation of seed germination inhibitors. J. Chem. Ecol. 9:1223–1234.Google Scholar
  18. Mabry, T. J., Markham, K. R., and Thomas, M. B. 1970. The Systematic Identification of Flavonoids. Springer-Verlag, New York.Google Scholar
  19. Manners, G. D. and Galitz, D. S. 1985. Allelopathy of small everlasting (Antennaria microphylla): Identification of constituents phytotoxic to leafy spurge (Euphorbia esula). Weed Sci. 34:8–12.Google Scholar
  20. Menelaou, M. A., Weidenhamer, J. D., Williamson, G. B., Fronczek, F. R., Fischer, H. D., Quijano, L., and Fischer, N. H. 1993. Diterpenes from Chrysoma pauciflosculosa: Effects on Florida sandhill species. Phytochemistry 34:97–105.Google Scholar
  21. Pue, K. J., Blum, U., Gerig, T. M., and Shafer, S. R. 1995. Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J. Chem. Ecol. 21:833–847.Google Scholar
  22. Richardson, D. R. and Williamson, G. B. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills. For. Sci. 34:592–605.Google Scholar
  23. Romeo, J. T. and Weidenhamer, J. D. 1998. Bioassays for allelopathy in terrestrial plants, pp. 179–211, in K. F.Haynes and J. G.Millar (eds.). Methods of Chemical Ecology, Vol. 2: Bioassay Methods. Kluwer Academic, Norvell, MA.Google Scholar
  24. Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol. 14:1561–1571.Google Scholar
  25. Shafer, S. R. and Blum, U. 1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J. Chem. Ecol. 17:369–389.Google Scholar
  26. Tanrisever, N., Fischer, N. H., and Williamson, G. B. 1987. Ceratiolin and other flavonoids from Ceratiola ericoides. Phytochemistry 26:175–179.Google Scholar
  27. Tulyathan, V., Boulton, R. B., and Singleton, V. L. 1989. Oxygen uptake by gallic acid as a model for similar reactions in wines. J. Agric. Food Chem. 37:844–849.Google Scholar
  28. Weidenhamer, J. D. 1996. Distinguishing resource competition and chemical interference: Overcoming the methodological impasse. Agron. J. 88:866–875.Google Scholar
  29. Weidenhamer, J. D., Hartnett, D. C., and Romeo, J. T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26:613–624.Google Scholar
  30. Weidenhamer, J. D., Menelaou, M. A., Macias, F. A., Fischer, N. H., Richardson, D. R., and Williamson, G. B. 1994. Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J. Chem. Ecol. 20:3345–3359.Google Scholar
  31. Weidenhamer, J. D. and Romeo, J. T. 1989. Allelopathic properties of Polygonella myriophylla: Field evidence and bioassays. J. Chem. Ecol. 15:1957–1970.Google Scholar
  32. Williamson, G. B., Fischer, N. H., Richardson, D. R., andde la Peña, A. 1989. Chemical inhibition of fire-prone grasses by the fire-sensitive shrub, Conradina canescens. J. Chem. Ecol. 15:1567–1577.Google Scholar
  33. Williamson, G. B., Obee, E. M., and Weidenhamer, J. D. 1992. Inhibition of Schizachyrium scoparium (Poaceae) by the allelochemical hydrocinnamic acid. J. Chem. Ecol. 18:2095–2105.Google Scholar
  34. Williamson, G. B. and Weidenhamer, J. D. 1990. Bacterial degradation of juglone: Evidence against allelopathy? J. Chem. Ecol. 16:1739–1741.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Jeffrey D. Weidenhamer
    • 1
  • John T. Romeo
    • 2
  1. 1.Department of ChemistryAshland UniversityAshlandUSA
  2. 2.Department of BiologyUniversity of South FloridaTampaUSA

Personalised recommendations