Journal of Chemical Ecology

, Volume 30, Issue 4, pp 741–755

Olfactory Responses to Aphid and Host Plant Volatile Releases: (E)-β-Farnesene an Effective Kairomone for the Predator Adalia bipunctata

  • Frédéric Francis
  • Georges Lognay
  • Eric Haubruge


The volatiles released from several aphid and host plant species, alone or associated, were studied for their infochemical role in prey location. Using a four-arm olfactometer, the attraction of several combinations of three aphid (Myzus persicae, Acyrthosiphon pisum, and Brevicoryne brassicae) and three plant (Vicia faba, Brassica napus, and Sinapis alba) species toward Adalia bipunctata larvae and adults was observed. Both predatory larvae and adults were attracted only by A. pisum and M. persicae when they were crushed, whatever the host plant. (E)-β-Farnesene, the aphid alarm pheromone, was the effective kairomone for the ladybird. Plant leaves alone (V. faba, B. napus, and S. alba) or in association with nonstressed whole aphids (the three species) did not have any attraction for the predator. The B. brassicae specialist aphid is the only prey that was not attracted to A. bipunctata larvae and adults, even if they were crushed. Release of B. brassicae molecules similar to the host plant allelochemicals was demonstrated by GC–MS analysis. The lack of behavioral response of the ladybird at short distance toward the cruciferous specialist aphid was related only to the absence of (E)-β-farnesene in the aphid prey volatile pattern.

Infochemical predator prey localization olfactometer β-farnesene kairomone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al Abassi, S., Birkett, M. A., Pettersson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and and alarm pheromone inhibitor is mediated by paired olfactory cells. J. Chem. Ecol. 26:1765–1771.Google Scholar
  2. Boo, K. S., Chung, I. B., Han, K. S., Pickett, J. A., and Wadhams, L. J. 1998. Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. J. Chem. Ecol. 24:631–639.Google Scholar
  3. Dagnelie, P. 1973. Théories et méthodes statistiques, tome 2. Presses agronomiques, Gembloux, Belgium.Google Scholar
  4. Dawson, G. W., Griffiths, D. C., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1987. Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). J. Chem. Ecol. 13:1663–1671.Google Scholar
  5. Du, Y.-J., Poppy, G. M., and Powell, W. 1996. Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J. Chem. Ecol. 22:1591–1605.Google Scholar
  6. Du, Y.-J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1368.Google Scholar
  7. Francis, F., Haubruge, E., and Gaspar, C. 2000a. Influence of host plants on the development of the specialist/generalist aphids and on their natural predator Adalia bipunctata. Eur. J. Entomol. 97:481–485.Google Scholar
  8. Francis, F., Haubruge, E., and Gaspar, C. 2000b. Aphid host plant and food suitability for aphidophagous larvae: Impact on ladybird reproductive performances. Proc. Brighton Crop Prot. Counc. Conf. 3:1025–1030.Google Scholar
  9. Francis, F., Haubruge, E., Hastir, P., and Gaspar, C. 2001b. Influence of the aphid host plant on the development and reproduction of the third trophic level, the predator Adalia bipunctata L. (Coleoptera: Coccinellidae). Environ. Entomol. 30:947–952.Google Scholar
  10. Francis, F., Lognay, G., Wathelet, J. P., and Haubruge, E. 2001a. Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae & Brevicoryne brassicae) trophic levels on Adalia bipunctata. J. Chem. Ecol. 27:243–256.Google Scholar
  11. Guerrieri, E., Poppy, G. M., Powell, W., Tremblay, E., and Pennacchio, F. 1999. Induction and systemic release of herbivore induced plant volatiles mediating in flight orientation of Aphidius ervi (Hymenoptera: Braconidae). J. Chem. Ecol. 25:1247–1261.Google Scholar
  12. Han, B. and Chen, Z. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 28:2203–2220.Google Scholar
  13. Hodek, I. and Honek, A. 1996. Ecology of Coccinellidae. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  14. Isaacs, R., Hardie, J., Hick, A. J., Pye, B. J., Smart, L. E., Wadhams, L. J., and Woodock, C. M. 1993. Behavioural responses of Aphis fabae to isothiocyanates in the laboratory and field. Pest. Sci. 39:349–355.Google Scholar
  15. Kielty, J. P., Allen-Williams, L. J., Underwood, N., and Eastwood, E. A. 1996. Behavioral responses of three species of ground beetle (Coleoptera, Carabidae) to olfactory cues associated with prey and habitat. J. Insect Behav. 9:237–250.Google Scholar
  16. Kirkland, D. L., Evans, K. A., and Lola-Luz, T. 1998. Manipulating the behaviour of beneficial insects in cereal crops to enhance control of aphids. Proc. Brighton Crop Prot. Conf. 2:663–668.Google Scholar
  17. Neveu, N., Grandgirard, J., Nenon, J. P., and Cortesero, A. M. 2002. Systematic release of herbivore induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J. Chem. Ecol. 28:1717–1732.Google Scholar
  18. Ninkovic, V., Abassi, S. A., and Pettersson, J. 2001. The influence of aphid-induced plant volatiles on ladybird beetle searching behavior. Biol. Control 21:191–195.Google Scholar
  19. Poppy, G. M. 1997. Tritrophic interactions: Improving ecological understanding and biological control. Endeavour 21:61–65.Google Scholar
  20. Reed, H. C., Tan, S. H., Haapanen, K., Killmon, M., Reed, D. K., and Elliot, N. C. 1995. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) to odor plants, aphids and plant—aphid complexes. J. Chem. Ecol. 21:407–415.Google Scholar
  21. Tumlinson, J. H., Turlings, T. C. J., and Lewis, W. J. 1992. The semiochemical complexes that mediate insect parasitoid foraging. Agric. Zool. Rev. 5:221–252.Google Scholar
  22. Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  23. Vet, L. E. M., van Lenteren, J. C., Heymans, M., and Meelis, E. 1983. An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol. Entomol. 8:97–106.Google Scholar
  24. Zhu, J., CossÉ, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Frédéric Francis
    • 1
  • Georges Lognay
    • 2
  • Eric Haubruge
    • 1
  1. 1.Unit of Pure and Applied Zoology, Gembloux, Agricultural UniversityGemblouxBelgium
  2. 2.Unit of General and Organic Chemistry, Gembloux, Agricultural University, Passage des Déportés 2GemblouxBelgium

Personalised recommendations