Journal of Chemical Ecology

, Volume 30, Issue 2, pp 439–452 | Cite as

Casuarina cunninghamiana Tissue Extracts Stimulate the Growth of Frankia and Differentially Alter the Growth of Other Soil Microorganisms

  • Jeff F. Zimpfer
  • José M. Igual
  • Brock McCarty
  • Charlie Smyth
  • Jeffrey O. DawsonEmail author


Aqueous extracts of host plant Casuarina cunninghamiana tissue altered the in vitro growth of its diazotrophic microsymbiont Frankia and a selection of other soil microorganisms. The growth of actinomycetous Frankia strains, 55005, AvcI1, CesI5, CjI82 001, and Cj was stimulated by aqueous extracts of C. cunninghamiana tissue. Green cladodes (photosynthetic branches), unsuberized roots, and suberized roots were more stimulatory than dry cladodes and seed tissue. Aqueous extracts of green cladodes of C. cunninghamiana most stimulated the growth of Casuarina-derived Frankia strains CjI82 001 and 55005. The growth of isolates of soil bacteria Bradyrhizobium japonicum, Arthrobacter globiformis, and Bacillus subtillis and of the soil fungi Penicillium oxalicum and Arthroderma cookiellum was either inhibited or not affected by cladode extracts. Cladode extracts stimulated the growth of the actinomycete Streptomyces albus and the fungus Rhizopus homothallicus. The magnitude (as great as 100%) of the increase in growth caused by tissue extracts for the Casuarina-derived Frankia strains relative to other soil microbes suggests a host-specific enhancement of the microsymbiont.

Frankia Casuarina Terminalia actinorhizal plants symbiosis soil microbial community rhizosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, D. D. 1987. Relationships among pure cultured strains of Frankia based on host specificity. Physiol. Plant 70:245–248.Google Scholar
  2. Baker, D. D. and Schwintzer, C. R. 1990. Introduction, pp. 365–385, in C. R. Schwintzer and J. D. Tjepkema (eds.). The Biology of Frankia and Actinorhizal Plants. Academic Press, San Diego.Google Scholar
  3. Baker, D. D. and Torrey, J. G. 1980. Characterization of an effective actinorhizal microsymbiont Frankia AvcI1 (Actinomycetales). Can. J. Microb. 26:1066–1071.Google Scholar
  4. Benoit, L. F. and Berry, A. M. 1997. Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant 99:588–593.Google Scholar
  5. Bradford, M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72:248–254.Google Scholar
  6. Burggraaf, A. J. P. and Shipton, W. A. 1982. Estimates of Frankia growth under various pH and temperature regimes. Plant Soil 69:135–147.Google Scholar
  7. Burleigh, S. H. and Dawson, J. O. 1991. Effects of NaCl and melibiose on growth and sporulation of Frankia strain HFPCcI3. Aust. J. Ecol. 16: 531–535.Google Scholar
  8. Dickie, A. A., Koide, R. T., and Steiner, K. C. 2002. Influences of established trees on myrorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol. Monogr. 72:505–521.Google Scholar
  9. Diem, H. G., Gauthier, D., and Dommergues, Y. R. 1983. An effective strain of Frankia from Casuarina sp. Can. J. Bot. 61:2815–2821.Google Scholar
  10. Elo, S., Maunuksela, L., Salkinoja-Salonen, M., Smolander, A., and Haahtela, K. 2000. Humus bacteria of Norway spruce stands: Plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol. Ecol. 31:143–152.Google Scholar
  11. Gauthier, D., Jaffre, T., and Prin, Y. 2000. Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur. J. Soil Biol. 36:169–175.Google Scholar
  12. Harborne, J. 1973. Phytochemical Methods. Chapman and Hall, London.Google Scholar
  13. Janczarek, M., Urbanik-Sypniewska, T., and Skorupska, A. 1996. Effects of authentic flavonoids and the exudate of clover root on the growth rate and inducing ability of nod genes of Rhizobium leguminosarum bv. trifolii. Microbiol. Res. 152:93–98.Google Scholar
  14. Kapulnik, Y., Joseph, C. M., and Phillips, D. A. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Physiol. Plant 84:1193–1196.Google Scholar
  15. Knowlton, S. and Dawson, J. O. 1983. Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubra roots by Frankia. Can. J. Bot. 61:2887–2882.Google Scholar
  16. Krumholz, G. D., Chval, M. S., McBride, M. J., and Tisa, L. S. 2003. Germination and physiological properties of Frankia spores. Plant Soil 254: 57–67.Google Scholar
  17. Latour, X., Corberand, T. S., Laguerre, G., Allard, F., and Lemanceau, P. 1996. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Env. Microbiol. 62:2449–2456.Google Scholar
  18. Latour, X., Philippot, L., Corberand, T., and Lemanceau, P. 1999. The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil. FEMS Microbiol. Ecol. 30:163–170.Google Scholar
  19. Lemanceau, P., Corberand, T., Gardan, L., Latour, X., Laguerre, G., Boeufgras, J. M., and Alabouvette, M. 1995. Effect of 2 plant-species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill), on the diversity of soil borne populations of fluorescent pseudomonads. Appl. Env. Microbiol. 61:1004–1012.Google Scholar
  20. Li, C., Lu, K., Trappe, J., and Bollen, W. 1970. Separation of phenolic compounds in alkali hydrolysates of forest soil by thin-layer chromatography. Can. J. Soil Sci. 50:458–460.Google Scholar
  21. Maunuksela, L., Zepp, K., Koivula, T., Zeyer, J., Haahtela, K., and Hahn, D. 1999. Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol. Ecol. 28:11–21.Google Scholar
  22. Murry, M. A., Fontain, M. S., and Torrey, J. G. 1984. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 78:61–78.Google Scholar
  23. Nickel, A. 2000. Population dynamics of Frankia in soil. PhD Dissertation. Swiss Federal Institute of Technology, Zurich.Google Scholar
  24. Paschke, M. W. and Dawson, J. O. 1992. Frankia abundance in soils beneath Betula nigra and other non-actinorhizal woody plants. Acta Oecol. 13:407–415.Google Scholar
  25. Perradin, Y., Mottet, M., and LaLonde, M. 1983. Infuence of phenolics on in vitro growth of Frankia strains. Can. J. Bot. 61:2807–2814.Google Scholar
  26. Sampo, S., Bergero, R., Buffa, G., and LuppiMosca, A. M. 1997. Soil fungal communities in a young and an old Alnus viridis coenosis. Mycologia 89:837–845.Google Scholar
  27. Sayed, F. and Wheeler, C. 1999. Effects of the flavonoid quercetin on the culture and isolation of Frankia from Casuarina root nodules. Folia Mircobiol. 44:59–62.Google Scholar
  28. Sedmak, J. J. and Grossberg, S. E. 1977. A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue G250. Anal. Biochem. 79:544–552.Google Scholar
  29. Selim, S., Delacour, S., and Schwencke, J. 1996. Specific long-chain fatty acids promote optimal growth of Frankia: Accumulation and intracellular distribution of palmitic and propionic acid. Arch. Microbiol. 165:252–257.Google Scholar
  30. Smolander, A. 1990. Frankia populations in soils under different tree species-with special emphasis on soils under Betula pendula. Plant Soil 121:1–10.Google Scholar
  31. Somasegaran, P. and Hoben, H. J. 1985. Methods in legume-Rhizobium technology, p. 273, in NifTAL Project and MIRCEN. University of Hawaii NifTAL Project and MIRCEN, Hawaii.Google Scholar
  32. Tisa, L., McBride, M., and Ensign, J. C. 1983. Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1ag. Can. J. Bot. 61:2768–2773.Google Scholar
  33. Tzean, S. S. and Torrey, J. G. 1989. Spore germination and the life cycle of Frankia in vitro. Can. J. Microbiol. 35:801–806.Google Scholar
  34. Vergnaud, L., Chaboud, A., Prin., Y., and Rougier, M. 1985. Preinfection events in the establishment of Alnus-Frankia symbiosis: Development of a spot inoculation technique. Plant Soil 87:67–78.Google Scholar
  35. Vogel, C. S. and Dawson, J. O. 1986. in vitro growth of five Frankia isolates in the presence of four phenolic acids and juglone. Soil Biol. Biochem. 18:27–231.Google Scholar
  36. Whitehead, D. 1964. Identification of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acid in soils. Nature 202:417–419.Google Scholar
  37. Whitehead, D., Dibb, H., and Hartley, R. 1983. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem. 15:133–136.Google Scholar
  38. Wilkinson, K. G., Sivasithamparam, K., Dixon, K. W., Fahy, P. C., and Bradley, J. K. 1994. Identification and characterization of bacteria associated with Western-Australian orchids. Soil Biol. Biochem. 26:137–142.Google Scholar
  39. Wollum, C. T., Youngberg, A. G., and Chichester, F. W. 1968. Relation of previous timber stand age to nodulation of Ceanothus velutinus. For. Sci. 14:114–118.Google Scholar
  40. Zimpfer, J. F., Kaelke, C. M., Smyth, C. A., Hahn, D., and Dawson, J. O. 2003. Frankia inoculation, soil biota, and host tissue amendment influence Casuarina nodulation capacity of a tropical soil. Plant Soil 254: 1–10.Google Scholar
  41. Zimpfer, J. F., Kennedy, G. J., Smyth, C. A., Hamelin, J., Navarro, E., and Dawson, J. O. 1999. Localization of Casuarina-infective Frankia near Casuarina cunninghamiana trees in Jamaica. Can. J. Bot. 77:1248–1256.Google Scholar
  42. Zimpfer, J. F., McCarty, B., Kaelke, C. M., Mulongwe, L., Igual, J. M., Smyth, C. A., and Dawson, J. O. 2002. Casuarina cunninghamiana cladode extracts increase the Frankia infectious capacity of a tropical soil. Symbiosis 33: 73–90.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Jeff F. Zimpfer
    • 1
  • José M. Igual
    • 2
  • Brock McCarty
    • 3
  • Charlie Smyth
    • 4
  • Jeffrey O. Dawson
    • 5
    Email author
  1. 1.Department of Biological SciencesUniversity of NevadaLas VegasUSA
  2. 2.Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones CientíficasSalamanca
  3. 3.Department of GeographyUniversity of ColoradoBoulderUSA
  4. 4.Department of Crop SciencesUniversity of IllinoisUrbanaUSA
  5. 5.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations