Advertisement

Journal of Chemical Ecology

, Volume 30, Issue 2, pp 255–271 | Cite as

The Role of Methyl Salicylate in Prey Searching Behavior of the Predatory Mite Phytoseiulus persimilis

  • Jetske G. De Boer
  • Marcel Dicke
Article

Abstract

Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae—a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 μg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

Plant–carnivore interactions herbivore-induced plant volatiles tritrophic interactions variation jasmonic acid specificity methyl salicylate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bernays, E. A. 2001. Neural limitations in phytophagous insects: Implications for diet breadth and evolution of host affiliation. Annu. Rev. Entomol. 46:703–727.Google Scholar
  2. Bernays, E. A. and Wcislo, W. T. 1994. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69:187–204.Google Scholar
  3. Cardoza, Y. J., Alborn, H. T., and Tumlinson, J. H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J. Chem. Ecol. 28:161–174.Google Scholar
  4. Crawley, M. J. 1993. GLIM for ecologists, pp. 265–290, in J. H. Lawton and G. E. Likens (eds.). Methods in Ecology. Blackwell, Oxford.Google Scholar
  5. De Bruyne, M., Dicke, M., and Tjallingii, W. F. 1991. Receptor cell responses in the anterior tarsi of Phytoseiulus persimilis to volatile kairomone components. Exp. Appl. Acarol. 13:53–58.Google Scholar
  6. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.Google Scholar
  7. Dicke, M. 1999. Specificity of herbivore-induced plant defences, pp. 43–54, in D. J. Chadwick and J. Goode (eds.). Insect-Plant Interactions and Induced Plant Defence (Novartis Foundation Symposium 223). Wiley, Chicester, UK.Google Scholar
  8. Dicke, M. and Van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.Google Scholar
  9. Dicke, M. and Vet, L. E. M. 1999. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483–520, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Predators. Blackwell, Oxford.Google Scholar
  10. Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants. J. Chem. Ecol. 25:1907–1922.Google Scholar
  11. Dicke, M., Takabayashi, J., Posthumus, M. A., Schutte, C., and Krips, O. E. 1998. Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: Variation in production of cues and in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.Google Scholar
  12. Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16:381–396.Google Scholar
  13. Drukker, B., Bruin, J., Jacobs, G., Kroon, A., and Sabelis, M. W. 2000. How predatory arthropods learn to cope with variability in volatile plant signals in the environment of their herbivore prey. Exp. Appl. Acarol. 24:881–895.Google Scholar
  14. Du, Y. J., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1368.Google Scholar
  15. Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.Google Scholar
  16. Gouinguené, S. P. and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.Google Scholar
  17. Gouinguené, S., Degen, T., and Turlings, T. C. J. 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16.Google Scholar
  18. Helle, W. and Sabelis, M. W. (eds). 1985. World Crop Pests: Spider Mites. Their Biology, Natural Enemies and Control. Vol. 1B. Elsevier, Amsterdam, The Netherlands.Google Scholar
  19. Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., and Dicke, M. 1999. The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: Influence of starvation and experience. J. Chem. Ecol. 25:2623–2641.Google Scholar
  20. Li, Y., Dickens, J. C., and Steiner, W. W. M. 1991. Antennal olfactory responsiveness of Microplitis croceipes (Hymenopetera: Braconidae) to cotton plant volatiles. J. Chem. Ecol. 18:1761–1773.Google Scholar
  21. Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, S., and Nishioka, T. 2000. Involvement of jasmonate-and salicylate-related signaling pathways for the production of herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398.Google Scholar
  22. Paré, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defence against insect herbivores. Plant Physiol. 121:325–331.Google Scholar
  23. Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Insect supersense. Mate and host location by insects as model systems for exploiting olfactory interactions. The Biochemist 8–13.Google Scholar
  24. Sabelis, M. W. and Van De Baan, H. E. 1983. Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl. 33:303–314.Google Scholar
  25. Sabelis, M. W., Vermaat, J. E., and Groeneveld, A. 1984. Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odour gradients of a kairomone. Physiol. Entomol. 9:437–446.Google Scholar
  26. Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 1997. Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23:2241–2260.Google Scholar
  27. Shimoda, T. and Dicke, M. 2000. Attraction of a predator to chemical information related to nonprey: when can it be adaptive? Behav. Ecol. 11:606–613.Google Scholar
  28. Smid, H. M., Van Loon, J. J. A., Posthumus, M. A., and Vet, L. E. M. 2002. GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: Olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology 12:169–176.Google Scholar
  29. Takabayashi, J. and Dicke, M. 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64:187–193.Google Scholar
  30. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994a. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.Google Scholar
  31. Takabayashi, J., Dicke, M., Takahashi, S., Posthumus, M. A., and Van Beek, T. A. 1994b. Leaf age affects composition of herbivore-induced synomones and attractions of predatory mites. J. Chem. Ecol. 20:373–386.Google Scholar
  32. Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287.Google Scholar
  33. Turlings, T. C. J. and Fritzsche, M. E. 1999. Attraction of parasitic wasps by caterpillar-damaged plants, pp. 21–32, in D. J. Chadwick and J. Goode (eds.). Insect-Plant Interactions and Induced Plant Defence (Novartis Foundation Symposium 223). Wiley, Chicester, UK.Google Scholar
  34. Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., and Dorn, S. 1998. The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biol. Contr. 11:122–129.Google Scholar
  35. Turlings, T. C. J., McCall, P., Alborn, H. T., and Tumlinson, J. H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.Google Scholar
  36. Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of its hosts. J. Chem. Ecol. 17:2235–2251.Google Scholar
  37. Van den Boom, C. E. M., Van Beek, T. A., Posthumus, M. A., De Groot, A. E., and Dicke, M. in press. Qualitative and quantitative variation between volatile profiles induced by Tetranychus urticae feeding on different plant parts of various families. J. Chem. Ecol. 30:69–90.Google Scholar
  38. Vet, L. E. M. 1999a. From chemical to population ecology: Infochemical use in an evolutionary context. J. Chem. Ecol. 25:31–49.Google Scholar
  39. Vet, L. E. M. 1999b. Evolutionary aspects of plant-carnivore interactions. pp. 3–20, in D. J. Chadwick and J. A. Goode (eds.). Insect-Plant Interactions and Induced Plant Defence (Novartis Foundation Symposium 223). Wiley, Chicester, UK.Google Scholar
  40. Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  41. Vet, L. E. M., De J, A. G., Franchi, E., and Papaj, D. R. 1998. The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim. Behav. 55:1271–1279.Google Scholar
  42. Weissbecker, B., Van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Jetske G. De Boer
    • 1
  • Marcel Dicke
    • 1
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations