Journal of Chemical Ecology

, Volume 30, Issue 1, pp 91–107 | Cite as

Changes in Chemical Signature and Host Specificity from Larval Retrieval to Full Social Integration in the Myrmecophilous Butterfly Maculinea rebeli

  • K. Schönrogge
  • J. C. Wardlaw
  • A. J. Peters
  • S. Everett
  • J. A. Thomas
  • G. W. Elmes
Article

Abstract

The ant social parasite, Maculinea rebeli shows high levels of host specificity at a regional scale. While 68–88% of caterpillars in the field are adopted by nonhost Myrmica ants, 95–100% of the butterflies emerge from the natural host M. schencki the following year. While retrieval of preadoption caterpillars is specific to the genus Myrmica, it does not explain differential survival with different Myrmica species. We present survival data with host and nonhost Myrmica species suggesting that, with nonhosts (M. sabuleti and M. rubra), survival depends on the physiological state of the colony. We also compared the similarities of the epicuticular surface hydrocarbon signatures of caterpillars that were reared by host and nonhost Myrmica for 3 weeks with those from tending workers. Counterintuitively, the hydrocarbons of postadoption caterpillars were more similar (78%, 73%) to the ant colony profiles of the nonhost species than were caterpillars reared in colonies of M. schencki (42% similarity). However, caterpillars from M. schencki nests that were then isolated for 4 additional days showed unchanged chemical profiles, whereas the similarities of those from nonhost colonies fell to 52 and 56%, respectively. Six compounds, presumably newly synthesized, were detected on the isolated caterpillars that could not have been acquired from M. sabuleti and M. rubra (nor occurred on preadoption caterpillars), five of which were found on the natural host M. schencki. These new compounds may relate to the high rank the caterpillars attain within the hierarchy of M. schencki societies. The same compounds would identify the caterpillars as intruders in non-schencki colonies, where their synthesis appeared to be largely suppressed. The ability to synthesize or suppress additional compounds once adopted explains the pattern of mortalities found among fully integrated caterpillars in Myrmica colonies of different species and physiological states.

Host specificity chemical mimicry cuticular hydrocarbons Maculinea butterflies Myrmica ants myrmecophily 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akino,T., Knapp,J. J., Thomas,J. A., and Elmes,G. W. 1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli,a social parasite of Myrmica ant colonies. Proc. R. Soc. London, Ser. B-Biol. Sci. 266:1419-1426.Google Scholar
  2. Als,T. D., Nash,D. R., and Boomsma,J. J. 2001. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Ani. Behav. 62:99-106.Google Scholar
  3. Als,T. D., Nash,D. R., and Boomsma,J. J. 2002. Geographical variation in host-ant specificity of the parasitic butterfly. Maculinea alcon in Denmark. Ecol. Entomol. 27:403-414.Google Scholar
  4. Carr,M. R. 1996. Primer User Manual (Plymouth routines in multivariate ecological research), Version 4.0b. Plymouth Marine Laboratory, Plymouth, UK.Google Scholar
  5. Clarke,K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117-143.Google Scholar
  6. Dani,F. R., Jones,G. R., Destri,S., Spencer,S. H., and Turillazzi,S. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Ani. Behav. 62:165-171.Google Scholar
  7. Dettner,K. and Liepert,C. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39:129-154.Google Scholar
  8. DeVries,P. J., Cocroft,R. B., and Thomas,J. 1993. Comparison of acoustical signals in Maculinea butterfly caterpillars and their obligate host Myrmica ants. Biol. J. Linnean Soc. 49:229-238.Google Scholar
  9. Elmes,G. W., Akino,T., Thomas,J. A., Clarke,R. T., and Knapp,J. J. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525-535.Google Scholar
  10. Elmes,G. W., Barr,B., Thomas,J. A., and Clarke,R. T. 1999. Extreme host specificity by Microdon mutabilis (Diptera: Syrphidae), a social parasite of ants. Proc. R. Soc. London Ser. B-Biol. Sci. 266:447-453.Google Scholar
  11. Elmes,G. W., Thomas,J. A., Munguira,M. L., and Fiedler,K. 2001. Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biol. J. Linnean Soc. 73:259-278.Google Scholar
  12. Elmes,G. W., Thomas,J. A., and Wardlaw,J. C. 1991b. Larvae of Maculinea rebeli,a large-blue butterfly, and their Myrmica host ants–Wild adoption and behavior in ant-nests. J. Zool. 223:447-460.Google Scholar
  13. Elmes,G. W., Wardlaw,J. C., Schönrogge,K., Thomas,J. A., and Clarke,R. T. 2004. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica species. Entomol. Exp. Appl. Google Scholar
  14. Elmes,G. W., Wardlaw,J. C., and Thomas,J. A. 1991a. Larvae of Maculinea rebeli,a large-blue butterfly and their Myrmica,host ants–Patterns of caterpillar growth and survival. J. Zool. 224:79-92.Google Scholar
  15. Fiedler,K. 1998. Lycaenid–ant interactions of the Maculinea type: Tracing their historical roots in a comparative framework. J. Insect Conserv. 2:3-14.Google Scholar
  16. Fiedler,K. 1990. New information on the biology of Maculinea nausithous and M. teleius (Lepidoptera: Lycaenidae). Nota Lepid 12:246-256.Google Scholar
  17. Fiedler,K. 1991. Systematic, evolutionary, and ecological implications of Myrmecophily within Lycaenidae (Insecta: Lepidoptera: Papilionidae). Zoologisches Forschungsinstitut und Museum Alexander König, Bonn.Google Scholar
  18. Hölldobler,B. and Wilson,E. O. 1990. The Ants. Springer Verlag, Berlin.Google Scholar
  19. Lenoir,A., D'Ettorre,P., Errard,C., and Hefetz,A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573-599.Google Scholar
  20. Pierce,N. E., Braby,M. F., Heath,A., Lohman,D. J., Mathew,J., Rand,D. B., and Travassos,M. A. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47:733-771.Google Scholar
  21. Pierce,N. E., Kitching,R. L., Buckley,R. C., Taylor,M. F. J., and Benbow,K. F. 1987. The costs and benefits of cooperation Between the Australian Lycaenid Butterfly, Jalmenus evagoras,and its attendant ants. Behav. Ecol. Sociobiol. 21:37-248.Google Scholar
  22. Schönrogge,K., Barr,B., Wardlaw,J. C., Napper,E., Gardner,M. G., Breen,J., Elmes,G. W., and Thomas,J. A. 2002. When rare species become endangered: Cryptic speciation in myrmecophilous hoverflies. Biol. J. Linnean Soc. 75:291-300.Google Scholar
  23. Schönrogge,K., Wardlaw,J. C., Thomas,J. A., and Elmes,G. W. 2000. Polymorphic growth rates in myrmecophilous insects. Proc. R. Soc. London Ser. B-Biol. Sci. 267:771-777.Google Scholar
  24. Steiner,F. M., Sielezniew,M., Schlick-Steiner,B. C., Höttinger,H., Stankiewicz,A., and Gornicki,A. 2003. Host specificity revisited: New data on Myrmica host ants of the vulnerable lycaenid butterfly Maculinea rebeli. J. Insect Conserv. 7:1-6.Google Scholar
  25. Thomas,J. A. 2002. Larval niche selection and evening exposure enhance adoption of a predacious social parasite, Maculinea arion (large blue butterfly), by Myrmica ants. Oecologia 122:531-537.Google Scholar
  26. Thomas,J. A. and Wardlaw,J. C. 1992. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:101-109.Google Scholar
  27. Thomas,J. A. and Elmes,G. W. 1998. Higher productivity at the cost of increased host-specificity when Maculinea butterfly larvae exploit ant colonies through trophallaxis rather than by predation. Ecol. Entomol. 23:57-464.Google Scholar
  28. Thomas,J. A., Elmes,G. W., and Wardlaw,J. C. 1993. Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. 18:73-76.Google Scholar
  29. Thomas,J. A., Elmes,G. W., and Wardlaw,J. C. 1998. Polymorphic growth in larvae of the butterfly Maculinea rebeli,a social parasite of Myrmica ant colonies. Proc. R. Soc. London Ser. B-Biol. Sci. 265:1895-1901.Google Scholar
  30. Thomas,J. A., Elmes,G. W., Wardlaw,J. C., and Woyciechowski,M. 1989. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia 79:452-457.Google Scholar
  31. Vander Meer,R. K., and Morel,L. 1998. Nestmate recognition in ants, pp. 79-103, in: R. K. Vander Meer, M. D. Breed, M. L. Winston, and K. E. Espelie) (eds.). Pheromone Communication in Social Insects. Westview Press, Boulder, Westriew Press, Boulder, Co.Google Scholar
  32. Viana,A. M. M., Frezard,A., Malosse,C., Della Lucia,T. M. C., Errard,C.,and Lenoir,A. 2001. Colonial recognition of fungus in the fungus-growing ant Acromyrmex subterraneus (Hymenoptera: Formicidae). Chemoecology 11:29-36.Google Scholar
  33. Wardlaw,J. C., Elmes,G. W., and Thomas,J. A. 1998. Techniques for studying Maculinea butterflies I: Rearing Maculinea caterpillars with Myrmica ants in the laboratory. J. Insect Conserv. 2:79-84.Google Scholar
  34. Wardlaw,J. C., Thomas,J. A., and Elmes,G. W. 2000. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. 95:97-103.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • K. Schönrogge
    • 1
  • J. C. Wardlaw
    • 1
  • A. J. Peters
    • 2
  • S. Everett
    • 1
  • J. A. Thomas
    • 1
  • G. W. Elmes
    • 1
  1. 1.Centre for Ecology and Hydrology, Winfrith Technology CentreDorchesterUnited Kingdom
  2. 2.Bermuda Biological Station for Research, Ferry ReachSt. George'sBermuda

Personalised recommendations