Journal of Chemical Ecology

, Volume 23, Issue 10, pp 2371–2381

Feeding Stimulating Signal in Labial Gland Secretion of the Subterranean Termite Reticulitermes santonensis

  • Judith Reinhard
  • Horst Hertel
  • Manfred Kaib


The paired labial glands of the French subterranean termite Reticulitermes santonensis Feytaud are located in the thorax. In the head, the glandular ducts join with those of the water sacs. In feeding choice tests with two semicircles of moist filter paper as food, workers of R. santonensis preferred the semicircle treated with labial gland extract compared to the semicircle treated with water (control). The labial gland secretion carries a signal that stimulates gnawing and feeding by termite workers during food exploitation. The extract of the labial gland even elicited feeding behavior when applied without food (on glass plates). The content of the water sacs was not effective as a feeding stimulus and neither were different body parts except for the fat-body. Water sacs are thus not a reservoir for the labial gland secretion, but their contents may serve as a solvent or carrier for the phagostimulant signal. The signal is highly polar, heat-resistant, nonvolatile, and thus very persistent. There is evidence that the signal from the labial gland is not species specific. Instead, it might be part of a general strategy by termites to exploit food sources.

Termites chemical communication exocrine gland pheromones feeding behavior feeding aggregation phagostimulant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALIBERT, J. 1983. Innervation de l'appareil salivaire du termite Kalotermes flavicollis Fabr. Histologie et ultrastructure: Relation des axones avec les cells de la glande et du réservoir. Arch. Anat. Microsc. 72:133–162.Google Scholar
  2. BECKER, G. 1970. Vergleichende Untersuchungen zur Ökologie einiger Reticulitermes-Arten (Ins., Isopt.). Z. Angew. Entomol. 2:183–216.Google Scholar
  3. BILLEN, J., JOYE, L., and LEUTHOLD, R. H. 1989. Fine structure of the labial gland in Macrotermes bellicosus (Isoptera, Termitidae). Acta Zool. 70:37–45.Google Scholar
  4. BRANDL, R., BAGINE, R. N. K., and KAIB, M. 1996. The distribution of Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae) and its termitophile Paraclystis (Lepidoptera: Tineidae) in Kenya: Its importance for understanding east African biogeography. Global Ecol. Biogeog. Lett. 5:143–148.Google Scholar
  5. BRIAN, M. V. 1983. Social Insects, Ecology and Behavioral Biology. Chapman and Hall, London.Google Scholar
  6. COSTA-LEONARDO, A. M., and CRUZ-LANDIM, C. 1991. Morphology of the salivary gland acini in Grigiotermes bequaerti (Osoptera: Termitidae: Apicotermitinae). Entomol. Gen. 16:13–21.Google Scholar
  7. GRASSé, P.-P. 1982. Termitologia, Vol. 1. Masson, Paris.Google Scholar
  8. HALL, P., and TRANIELLO, J. F. A. 1985. Behavioral bioassays of termite trail pheromones: Recruitment and orientation effects of cembrene-A in Nasutitermes costalis (Isoptera: Termitidae) and discussion of factors affecting termite response in experimental contexts. J. Chem. Ecol. 11:1503–1513.Google Scholar
  9. HARRIS, W. V. 1968. African termites of the genus Schedorhinotermes (Isoptera: Rhinotermitidae) and associated termitophiles (Lepidoptera: Tineidae). Proc. R. Entomol. Soc. London 37:103–113.Google Scholar
  10. HEWITT, P. H., NEL, J. J. C., and SCHOEMAN, I. 1971. Influence of group size on water imbibition by Hodotermes mossambicus alate termites. J. Insect Physiol. 17:587–600.Google Scholar
  11. HŐLLDOBLER, B., and WILSON, E. O. 1990. The Ants. Belknap Press, Cambridge, Massachusetts.Google Scholar
  12. HOGAN, M., VEIVERS, P. C., SLAYTOR, M.,and CZOLU, R.T. 1988. The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol. 34:891–899.Google Scholar
  13. HOWARD, R., MATSUMURA, F., and COPPEL, H. C. 1976. Trail-following pheromones of the Rhinotermitidae: Approaches to their authentication and specificity. J. Chem. Ecol. 2:147–166.Google Scholar
  14. KAIB, M., and BRANDL, R. 1992. Distribution, geographic variation and between-colony compatibility of Schedorhinotermes lamanianus in Kenya (Isoptera: Rhinotermitidae), pp. 121–131, in J. Billen (ed.). Biology and Evolution of Social Insects. Leuven University Press, Leuven, Belgium.Google Scholar
  15. KAIB, M., BRUINSMA, O., and LEUTHOLD, R. H. 1982. Trail-following in termites: Evidence for a multicomponent system. J. Chem. Ecol. 8:1193–1205.Google Scholar
  16. KAIB, M., and ZIESMANN, J. 1992. The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): morphology and function during communal food exploitation. Insectes Soc. 39:373–384.Google Scholar
  17. MARTIN, M. M., and MARTIN, J. S. 1978. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 119:1453–1455.Google Scholar
  18. MASCHWITZ, U., and THO, Y. P. 1974. Chinone als Wehrsubstanzen bei einigen orientalischen Macrotermitinen. Insectes Soc. 21:231–234.Google Scholar
  19. NOIROT, C. 1969. Glands and secretions, pp. 89–123, in K. Krishna and F. Weesner (eds.). Biology of the Termites, Vol. 1. Academic Press, New York.Google Scholar
  20. OLAGBEMIRO, T. O., SANI, K. M., and STADDON, B. W. 1990. A note on volatiles from exocrine glands of some grassland ants and termites from tropical West Africa, pp. 343–348, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press, New York.Google Scholar
  21. PASTEELS, J. M. 1965. Polythéisme chez les ouvriers de Nasutitermes lujae (Termitidae: Isoptères). Biol. Gabon. 1:191–205.Google Scholar
  22. REINHARD, J., and KAIB, M. 1995. Interaction of pheromones during food exploitation by the termite Schedorhinotermes lamanianus. Physiol. Entomol. 20:266–272.Google Scholar
  23. REINHARD, J., HERTEL, H., and KAIB, M. 1997. Systematic search for food in the subterranean termite Reticulitermes santonensis Feytaud (Isoptera: Rhinotermitidae). Insectes Soc. 44:147–158.Google Scholar
  24. SCHEDEL, A., and KAIB, M. 1987. Polyethism during foraging in Schedorhinotermes lamanianus in unprotected areas: The role of exocrine glands, p. 416, in J. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag J. Peperny, Münich.Google Scholar
  25. VEIVERS, P. C., MÜHLEMANN, R., SLAYTOR, M., LEUTHOLD, R. H., and BIGNELL, D. E. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjödtedt. J. Insect Physiol. 37:675–682.Google Scholar
  26. WATSON, J. A. L., HEWITT, P. H., and NEL, J. J. C. 1971. The water sacs of Hodotermes mossambicus. J. Insect Physiol. 17:1705–1709.Google Scholar
  27. WILSON, E. O. 1971. The Insect Societies. Belknap Press, Cambridge, Massachusetts.Google Scholar
  28. YAMAOKA, I., and NAGATANI, I. 1975. Cellulose digestion system in the termite Reticulitermes speratus (Kolbe). I. Producing sites and physiological significance of two kinds of cellulase in the worker. Zool. Mag. 84:23–29.Google Scholar
  29. ZHUZHIKOV, D. P., and KOROVKINA, N. M. 1972. Special characteristics of the digestion in termites, pp. 144–156, in E. K. Zolotarev (ed.). Termites. Collected Papers, Transactions of the Entomological Division No. 2. University Publishing House, Moscow.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Judith Reinhard
    • 1
  • Horst Hertel
    • 1
  • Manfred Kaib
    • 2
  1. 1.Bundesanstalt für Materialforschung und -prüfung, Labor IV.11BerlinGermany
  2. 2.Universität Bayreuth, Lehrstuhl TierphysiologieBayreuthGermany

Personalised recommendations