Advertisement

Journal of Chemical Ecology

, Volume 23, Issue 11, pp 2445–2453 | Cite as

Do Germination Indices Adequately Reflect Allelochemical Effects on the Germination Process?

  • G. Chiapusio
  • A. M. Sánchez
  • M. J. Reigosa
  • L. González
  • F. Pellissier
Article

Abstract

Allelopathy is often demonstrated by testing allelochemical effects on germination using many germination indices to assess them. The objective of this work was to compare four common germination indices (GT, S, AS, and CRG) previously calculated with the same data in order to discuss their physiological meaning. Each index led to a different interpretation of allelochemical effect on germination. Considering all indices, the S index was the most sensitive, followed by the AS and CRG indices, which provided the same information. The GT index, which gave only a global germination interpretation, was not precise enough in describing allelochemical actions during germination. Nevertheless, none of the indices exactly reflected the germination process. Thus, simple comparisons between the control and the test at each exposure time were more appropriate.

Allelochemical allelopathy benzoxazolinone germination hydroxamic acid indices Lactuca sativa phenol p-hydroxybenzoic acid protocatechuic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. AHMED, M., and WARDLE, D. A. 1994. Allelopathic potential of vegetative and flowering ragwort (Senecio jacobaea L.) plants against associated pasture species. Plant Soil 164:61–68.Google Scholar
  2. ALIOTTA, G., CAFIERO, G., DE FEO, V., and SACCHI, R. 1994. Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. J. Chem. Ecol. 20:2761–2775.Google Scholar
  3. BARUAH, N. C., SARMA, J. C., BARUA, N. C., SARMA, S., and SHARMA, R. P. 1994. Germination and growth inhibitory sesquiterpene lactones and a flavone from Tithonia diversifolia. Phytochemistry 36:29–36.Google Scholar
  4. BEWLEY, J. D., and BLACK, M. 1985. Seeds: Physiology of Development and Germination. Plenum Press, New York, 367 pp.Google Scholar
  5. BRADBEER, J. W. 1988. Seed Dormancy and Germination. Blackie and Son, Glasgow, 146 pp.Google Scholar
  6. CHRISTEN, O., and LOVETT, J. V. 1993. Effects of a short-term p-hydroxybenzoic acid application on grain yield and yield components in different tiller categories of spring barley. Plant Soil 151:279–286.Google Scholar
  7. EINHELLIG, F. A., SCHON, M. K., and RASMUSSEN, J. A. 1982. Synergistic effects of four cinnamic acid compounds on grain sorghum. J. Plant Growth Regul. 1:251–258.Google Scholar
  8. FARGASOVA, A. 1994. Toxicity determination of selected plant growth hormones on germination and root growth of Sinapsis alba seeds. Biologia (Bratislava) 49:109–112.Google Scholar
  9. HEGDE, R. S., and MILLER, D. A. 1992. Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron. J. 84:940–946.Google Scholar
  10. HOFFMAN, M., WESTON, L. A., SNYDER, J. C., and REGNIER, E. E. 1996. Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 44:579–584.Google Scholar
  11. JÄDERLUND, A., ZACKRISSON, O., and NILSSON, M. C. 1996. Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 22:973–986.Google Scholar
  12. KAMINSKY, R. 1981. The microbial origin of the allelopathic potential of Adenostoma fasciculutum H & A. Ecol. Monogr. 51:365–382.Google Scholar
  13. KHANDAKAR, A. L., and BRADBEER, J. W. 1983. Jute Seed Quality. Bangladesh Agricultural Research Council, Dhaka.Google Scholar
  14. KROGMEIER, M. J., and BREMMER, J. M. 1989. Effects of phenolic acids on seed germination and seedling growth in soil. Biol. Fertil. Soils 8:116–122.Google Scholar
  15. LEATHER, G. R., and EINHELLIG, F. A. 1988. Bioassay of naturally occurring allelochemicals for phytotoxicity. J. Chem. Ecol. 14:1821–1828.Google Scholar
  16. LEVI-MINZI, R., SAVIOZZI, A., and RIFFALDI, R. 1994. Organic acids as seed germination inhibitors. J. Environ. Sci. Health A29:2203–2217.Google Scholar
  17. LOVETT, J., and RYUNTYU, M., 1992. Allelopathy: broadening the context, pp. 11–19, in S. J. H. Rizvi and V. Rizvi (eds.). Allelopathy, Basic and Applied Aspects. Chapman & Hall, London.Google Scholar
  18. PELLISSIER, F. 1993. Allelopathic inhibition of spruce germination. Acta Ecol. 14:211–218.Google Scholar
  19. RICE, E. L. 1984. Allelopathy, 2nd ed. Academic Press, New York, 422 pp.Google Scholar
  20. SÁNCHEZ, A. M., CHIAPUSIO, G., REIGOSA, M. J., GONZALEZ, L., and PELLISSIER, F. 1996. BOA and p-hydroxybenzoic physiological effects on Lactuca sativa. Abstract of the First World Congress on Allelopathy, Cadiz, Spain, p. 215.Google Scholar
  21. TARAYRE, M., THOMPSON, J. D., ESCARRÉ, J., and LINHART, Y. B. 1995. Intra-specific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia 101:110–118.Google Scholar
  22. WARDLE, D. A., AHMED, M., and NICHOLSON, K. S. 1991. Allelopathic influence of nodding thistle (Carduus nutans) L. seeds on germination and radicle growth of pasture plants. N. Z. J. Agric. Res. 34:185–191.Google Scholar
  23. WILLIAMS, R. D., and HOAGLAND, R. E. 1982. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci. 30:206–212.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • G. Chiapusio
    • 1
  • A. M. Sánchez
    • 2
  • M. J. Reigosa
    • 2
  • L. González
    • 2
  • F. Pellissier
    • 1
  1. 1.Department of Life Sciences, Laboratory Dynamics of Altitude EcosystemsUniversity of SavoieLe Bourget-du-Lac CedexFrance
  2. 2.Department of Plant Biology and Soil Science, Laboratory of Plant EcophysiologyUniversity of VigoVigoSpain

Personalised recommendations