Journal of Chemical Ecology

, Volume 23, Issue 6, pp 1527–1547

Multiple Functions for Secondary Metabolites in Encrusting Marine Invertebrates

  • Mikel A. Becerro
  • Xavier Turon
  • Maria J. Uriz


We used three chemical fractions (spanning a wide range of polarities) from the extracts of four marine invertebrates, the spongesCrambe crambe andHemimycale columella and the ascidiansCystodytes dellechiajei andPolysyncraton lacazei, to test inhibition of cell division, photosynthesis, and settlement. We used assay organisms from the same habitat, seeking to determine whether a species may display diverse, ecologically relevant bioac-tivities and, if so, whether the same types of compound may be responsible for such activities. Cell division was strongly inhibited by the spongeC. crambe. A dichloromethane fraction fromC. crambe prevented development of sea urchinParacentrotus lividus eggs at a concentration of 10 μg/ml, as did the butanolic fraction, but at higher concentrations (50 and 100 μg/ml). At 50 μg/ml, the aqueous fraction ofC. crambe allowed cell division but prevented eggs from developing beyond the gastrula stage. Similar results were recorded with the dichloromethane fraction ofP. lacazei and from the aqueous fraction ofH. columella. Photosynthesis was unaffected by any of the species at 50 μg/ml. Larval settlement was inhibited by one or another fraction from the four species surveyed at a concentration of 50 μg/ml, althoughC. crambe exhibited the greatest amount of activity. We therefore found that various fractions displayed the same type of bioactivity, while compounds from the same fraction were responsible for multiple activities, suggesting that secondary metabolites are multiple-purpose tools in nature, which is relevant to our understanding of species ecology and evolution. Moreover, results showed that the assessment of the role of chemical compounds is significantly influenced by the assay organism, fractionation procedure, concentration, and duration of experiments. All these factors should be carefully considered when testing ecological hypotheses of the roles of chemically-mediated bioactivities.

Secondary metabolites chemical defense evolution ascidians sponges 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BECERRO, M. A. 1994. Chemically mediated bioactivity of the encrusting spongeCrambe crambe and its ecological consequences. PhD thesis. University of Barcelona.Google Scholar
  2. BECERRO, M. A.,LÓPEZ, N. I.,TURON, X., andURIZ, M. J. 1994. Antimicrobial activity and surface bacterial film in marine sponges.J. Exp. Mar. Biol. Ecol. 179:195–205.Google Scholar
  3. BECERRO, M. A.,TURON, X., andURIZ, M. J. 1995. Natural variation of toxicity in the encrusting spongeCrambe crambe (Schmidt) in relation to size and environment.J. Chem. Ecol. 21:1931–1946.Google Scholar
  4. BERLINCK, R. G. S.,BRAEKMAN, J. C.,DALOZE, D.,HALLENGA, K., andOTTINGER, R. 1990. Two new guanidine alkaloids from the Mediterranean spongeCrambe crambe.Tetrahedron Lett. 31:6531–6534.Google Scholar
  5. BERLINCK, R. G. S.,BIFULCO, G.,BRAECKMAN, J. C.,BRUNO, I.,DALOZE, D.,PEM, S.,RICCIO, R.,SPAMPINATO, S., andSPERONI, E. 1992a. Strong Ca++ channel blocker activity of crambescidin 816, a cytotoxic guanidine alkaloid from the marine spongeCrambe crambe.In 7th International Symposium on Marine Natural Products, Capri, Italy.Google Scholar
  6. BERLINCK, R. G. S.,BRAEKMAN, J. C.,DALOZE, D.,BRUNO, I.,RICCIO, R.,ROGEAU, D., andAMADE, P. 1992b. Crambines C1 and C2: Two further ichthyotoxic guanidine alkaloids from the spongeCrambe crambe.J. Nat. Prod. 55:528–532.Google Scholar
  7. BHAKUNI, D. S., andJAIN, S. 1990. Bioactive molecules of the marine invertebrates. Part I: Sponges, jelly fish, sea anemones, corals, and bryozoans.J. Sci. Ind. Res. 49:330–349.Google Scholar
  8. CARIELLO, L.,GIUDICI, M., andZANETTI, L. 1980. Developmental aberrations in the sea-urchin eggs induced by avarol and two congeners, the main sesquiterpenoid hydroquinones from the marine spongeDysidea avara.Comp. Biochem. Physiol. 65:37–41.Google Scholar
  9. CLARE, A. S. 1996. Marine neutral products antifoulants: status and potential.Biofouling 9:211–229.Google Scholar
  10. COLL, J. C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia).Chem. Rev. 92:613–631.Google Scholar
  11. COLL, J. C.,PRICE, I. R.,KONING, G. M., andBOWDEN, B. F. 1987. Alga overgrowth of alcyonacean soft corals.Mar. Biol. 96:129–135.Google Scholar
  12. CRONIN, G.,LINDQUIST, N.,HAY, M. E., andFENICAL, W. 1995. Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweedsDyctiota ciliolata andD. menstrualis.Mar. Ecol. Prog. Ser. 119:265–273.Google Scholar
  13. DAVIS, A. R.,TARGETT, N. M.,MC CONNELL, O. J., andYOUNG, C. M. 1989. Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth, pp. 85–114,in P. J. Scheuer (ed.). Bioorganic Marine Chemistry, Vol. 3. Springer-Verlag, New York.Google Scholar
  14. DINNEL, P. A.,LINK, J. M., andSTOBER, Q. J. 1987. Improved methodology for a sea urchin sperm biossay for marine waters.Arch. Environ. Contam. Toxicol. 16:23–32.Google Scholar
  15. FAULKNER, D. J. 1994. Marine natural products.Nat. Prod. Rep. 11:355–394.Google Scholar
  16. HARVELL, C. D., andFENICAL, W. 1989. Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.): Intracolony localization of defense.Limnol. Oceanogr. 34:382–389.Google Scholar
  17. HAY, M. E., andSTEINBERG, P. D. 1992. The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities, pp. 371–413,in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: The Interactions with Plant Metabolites, Vol. II. Academic Press, New York.Google Scholar
  18. HAY, M. E.,KAPPEL, Q. E., andFENICAL, W. 1994. Synergisms in plant defense against herbivores: Interactions of chemistry, calcification, and plant-quality.Ecology 75:1714–1726.Google Scholar
  19. JACKSON, J. B. C. 1979. Morphological strategies of sessile animals, pp. 499–555,in G. Larwood and B. R. Rosen (eds.). Biology and Systematics of Colonial Organisms. Academic Press, London.Google Scholar
  20. JARES-ERIJMAN, E. A.,SAKAI, R., andRINEHART, K. L. 1991. Crambescidins: New antiviral and cytotoxic compounds from the spongeCrambe crambe.J. Org. Chem. 56:5712–5715.Google Scholar
  21. KEOUGH, M. J. 1984. Kin-recognition and the spatial distribution of larvae of the bryozoanBugula neritina (L.).Evolution 38:142–147.Google Scholar
  22. KOBAYASHI, J.,CHENG, J.,WALCHLI, M. R.,NAKAYAMA, H.,HIRATA, Y.,SASAKI, T., andOHIZUMI, Y. 1988. Cystodytins A, B and C, novel tetracyclic aromatic alkaloids with potent antineoplastic activity from the Okinawan tunicateCystodytes dellechiajei.J. Org. Chem. 53:1800–1804.Google Scholar
  23. MAIDA, M.,CARROL, A. R., andCOLL, J. C. 1993. Variability of terpene content in the soft coralSinularia flexibilis (Coelenterata, Octocorallia) and its ecological implications.J. Chem. Ecol. 19:2285–2296.Google Scholar
  24. MANKER, D. C., andFAULKNER, D. J. 1996. Investigation of the role of diterpenes produced by marine pulmonatesTrimusculus reticulatus andT. conica.J. Chem. Ecol. 22:23–35.Google Scholar
  25. MARTIN, D., andURIZ, M. J. 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates.J. Exp. Mar. Biol. Ecol. 173:11–27.Google Scholar
  26. MINALE, L.,RICCIO, R., andSODANO, G. 1974. Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the spongeDysidea avara.Tetrahedron Lett. 38:3401–3404.Google Scholar
  27. PAUL, V. J. 1992. Ecological Roles of Marine Natural Products. Comstock, Ithaca, New York.Google Scholar
  28. PAUL, V. J., andVAN ALSTYNE, K. L. 1988. Chemical defense and chemical variation in some tropical Pacific species ofHalimeda (Halimedaceae, Chlorophyta).Coral Reefs 6:263–269.Google Scholar
  29. PAUL, V. J,LINDQUIST, N., andFENICAL, W. 1990. Chemical defenses of the tropical ascidianAtapozoa sp. and its nudibranch predatorsNembrotha spp.Mar. Ecol. Prog. Ser. 59:109–118.Google Scholar
  30. PAWLIK, J. R.,ALBIZATI, K. F., andFAULKNER, D. J. 1986. Evidence of a defensive role for limatulone, a novel triterpene from the limpetCollisella limatula.Mar. Ecol. Prog. Ser. 30:252–260.Google Scholar
  31. PAWLIK, J. R.,BURCH, M. T., andFENICAL, W. 1987. Patterns of chemical defense among Caribbean gorgonian corals: a preliminary survey.J. Exp. Mar. Biol. Ecol. 108:55–66.Google Scholar
  32. PAWLIK, J. R.,CHANAS, B.,TOONEN, R. J., andFENICAL, W. 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency.Mar. Ecol. Prog. Ser. 127:183–194.Google Scholar
  33. PORTER, J. M., andTARGETT, W. M. 1988. Allelochemical interactions between sponges and corals.Biol. Bull. 175:230–239.Google Scholar
  34. REISH, D. L., andOSHIDA, P. S. 1987. Manual of methods in aquatic environment research. Part 10. Short-term statistics bioassays.FAO Fish. Tech. Pap. 247:269.Google Scholar
  35. ROSENTHAL, G. A., andBERENBAUM, M. R. 1992. Herbivores: Their Interaction with Secondary Plant Metabolites, 2nd ed., Vol. II. Evolutionary and Ecological Processes. Academic Press, San Diego, California.Google Scholar
  36. RYLAND, J. S., andWARNER, G. F. 1986. Growth and form in modular animals: Ideas on the size and arrangement of zooids.Phil. Trans. R. Soc. London Ser. B313:53–76.Google Scholar
  37. SAMMARCO, P. W., andCOLL, J. C. 1988. The chemical ecology of alcyonacean corals (Coelenterata: Octocorallia), pp. 87–116,in P. J. Scheuer (ed.). Bioorganic Marine Chemistry, Vol. 2. Springer-Verlag, New York.Google Scholar
  38. SCHMITT, T. M.,HAY, M. E., andLINQUIST, N. 1995. Constraints on chemically mediated coevolution: Multiple functions for seaweed secondary metabolites.Ecology 76:107–203.Google Scholar
  39. SCHUPP, P. J., andPAUL, V. J. 1994. Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes.Ecology 75:1172–1185.Google Scholar
  40. SEBENS, K. P. 1987. The ecology of indeterminate growth in animals.Annu. Rev. Ecol. Syst. 18:371–407.Google Scholar
  41. SEIBERT, G.,RAETHER, W.,DOGOVIC, N.,GASIV, M. J.,ZAHN, R. K., andMÜLLER, W. E. G. 1985. Antibacterial and antifungal activity of avarone and avarol.Zentralbl. Bekt. Hyg. 260:379–386.Google Scholar
  42. STEINBERG, P. D., andVAN ALTENA, I. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia.Ecol. Monogr. 62:189–222.Google Scholar
  43. TURON, X. 1988. Distribución ecológica de las ascidias de las costas de Catalunya e islas Baleares (Mediterráneo occidental).Misc. Zool. 12:219–236.Google Scholar
  44. TURON, X. 1990. Distribution and abundance of ascidians from a locality on the northeast coast of Spain.PSZNI Mar. Ecol. 11:291–308.Google Scholar
  45. TURON, X. 1992. Periods of non-feeding inPolysyncraton lacazei (Ascidiacea: Didemnidae): A rejuvenative process?Mar. Biol. 112:647–655.Google Scholar
  46. TURON, X.,BECERRO, M. A.,LLOPIS, J., andURIZ, M. J. 1996a. Small-scale association measures in benthic communities as a clue for allelochemical interactions.Oecologia (Berlin) 108:351–360.Google Scholar
  47. TURON, X.,BECERRO, M. A., andURIZ, M. J. 1996b. Seasonal patterns of toxicity in benthic invertebrates: The encrusting spongeCrambe crambe (Poecilosclerida).Oikos 75:33–40.Google Scholar
  48. UNDERWOOD, A. J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.Ocean Mar. Biol. Annu. Rev. 19:513–605.Google Scholar
  49. URIZ, M. J. 1978. Contribución a la fauna de esponjas (Demospongia) de Cataluña e islas Baleares (Mediterráneo occidental).Misc. Zool. 11:291–308.Google Scholar
  50. URIZ, M. J.,MARTIN, D., andROSELL, D. 1992a. Relationship of biological and taxonomic characteristics to chemically mediated bioactivity in Mediterranean littoral sponges.Mar. Biol. 113:287–297.Google Scholar
  51. URIZ, M. J.,MARTIN, D., andROSELL, D. 1992b. The sponge population of the Cabrera archipielago (Balearic Islands): Characteristics, distribution and abundance of the most representative species.PSZNI Mar. Ecol. 13:101–117.Google Scholar
  52. URIZ, M. J.,TURON, X.,BECERRO, M. A., andGALERA, J. 1996a. Feeding deterrence in sponges. The role of toxicity, physical defenses, energetic contents, and life-history stage.J. Exp. Mar. Biol. Ecol. 205:187–203.Google Scholar
  53. URIZ, M. J.,BECERRO, M. A.,TUR, J. M., andTURON, X. 1996b. Location of toxicity within the Mediterranean spongeCrambe crambe (Demospongiae: Poecilosclerida).Mar. Biol. 124:583–590.Google Scholar
  54. VAN ALSTYNE, K. L.,WYLIE, C. R., andPAUL, V. J. 1994. Antipredator defenses in tropical soft corals (Coelenterata: Alcyoncea). II. The relative importance of chemical and structural defenses in three species ofSinularia.J. Exp. Mar. Biol. Ecol. 178:17–34.Google Scholar
  55. WAHL, M., andBANAIGS, B. 1991. Marine epibiosis. III. Possible antifouling defense adaptations inPolysyncraton lacazei (Giard) (Didemnidae, Ascidiacea).J. Exp. Mar. Biol. Ecol. 145:49–63.Google Scholar
  56. WAHL, M., andLAFARGUE, F. 1990. Marine epibiosis. II. Reduced fouling onPolysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potencial index.Oecologia 82:275–282.Google Scholar
  57. WYLIE, C. R., andPAUL, V. J. 1989. Chemical defenses in three species of Sinularia (Coelenterata, Alcyonacea): Effects against generalist predators and the butterflyfishChaetodon unimaculatus Bloch.J. Exp. Mar. Biol. Ecol. 129:141–160.Google Scholar
  58. YATES, J. L., andPECKOL, P. 1993. Effects of ambient availability and herbivory on polyphenolics in the seaweedFucus vesiculosus.Ecology 74:1757–1766.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Mikel A. Becerro
    • 1
  • Xavier Turon
    • 2
  • Maria J. Uriz
    • 1
  1. 1.Centre for Advanced Studies (C. S. I. C.)Blanes (Girona)Spain
  2. 2.Department of Animal Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations