Journal of Chemical Ecology

, Volume 23, Issue 2, pp 399–416 | Cite as

Allelochemical Activities of Pyrrolizidine Alkaloids: Interactions with Neuroreceptors and Acetylcholine Related Enzymes

  • T. Schmeller
  • A. El-Shazly
  • M. Wink


Thirteen pyrrolizidine alkaloids (PAs) 3′-acetylheliosupine, echihumiline, echihumiline N-oxide, echimidine, heliosupine, heliosupine N-oxide, heliotrine, monocrotaline, pycnanthine, retronecine, riddeline, senecionine, and seneciphylline) were analyzed for their interactions with acetylcholine-related enzymes, such as acetylcholine esterase (AChE), butyrylcholinesterase (BChE), choline acetyl transferase (ChAT), and neuroreceptors, such as α1- and α2-adrenergic, nicotinergic (nACh), muscarinergic (mACh) and serotonin2 (5-HT2) receptors. Whereas most PAs did not affect the enzymes, they show significant binding activities to mACh and 5-HT2 receptors: Twelve PAs exhibited a 50% inhibition of the specific binding of the radioligand [3H]quinuclidinyl benzilate (QNB) at the mAChR, i.e., IC50 values were between 8.7 μM and 512.5 μM, and 10 PAs exerted a 50% inhibition of the specific binding of the radioligand [3H]ketanserine at the 5-HT2R with IC50 values between 23.2 μM and 608.6 μM. The most active compound was 3′-acetylheliosupine, which was able to bind to all of the studied receptors with IC50 values in the range between 2.9 μM and 159.7 μM. The data imply that free PAs and PA N-oxides can affect several molecular targets: Besides long-term toxicity through DNA alkylation (by PA metabolites generated in the liver), liver and pneumotoxicity, neuroreceptors (among other molecular targets) may be modulated. The interference of PAs with neuronal signal transduction could mediate adverse physiological responses in herbivores and could thus contribute to chemical defense in plants and animals against herbivores and predators.

Pyrrolizidine alkaloids pyrrolizidine N-oxides cholinergic adrenergic serotonin receptors BChE AChE ChAT toxicity pharmacology chemical defense radioreceptor assay neuroreceptors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ATALC. K. 1978. Semisynthetic derivatives of pyrrolizidine alkaloids of pharmacodynamic importance: A review. Lloydia 41:315–326.Google Scholar
  2. BERNAYSE. A., and R. F. CHAPMAN. 1994. Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York.Google Scholar
  3. BILLERA.BOPPRÉM.WITTEL., and HARTMANNT. 1994. Pyrrolizidine alkaloids in Chromolaena odorata. Chemical and chemoecological aspects. Phytochemistry 35:615–619.Google Scholar
  4. BOPPRÉM. 1990. Lepidoptera and pyrrolizidine alkaloids: Exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:1–20.Google Scholar
  5. BOPPRÉM. 1995. Pharmakophagie: Drogen, Sex und Schmetterlinge. Biol. Z. 25:8–17.Google Scholar
  6. BROWNK. S., and TRIGOJ. R. 1995. The ecological activity of alkaloids, pp. 227–354in G. Cordell (ed.). The Alkaloids, Vol. 47. Academic Press, New York.Google Scholar
  7. CHESNEYC. F. ALLENJ. R., and HSUI. C. 1974. Right ventricular hypertrophy in monocrotaline pyrrole treated rats. Exp. Mol. Pathol. 20:257–268.Google Scholar
  8. DAMN. M. vanVERPOORTER., and MEIJDENE. van der. 1994. Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry 37:1013–1016.Google Scholar
  9. DAMN. M. vanVUISTERL. W. M.BERGSHOEFFC.VOSde H., and MEIJDENE. van der. 1995. The “raison d'ètre” of pyrrolizidine alkaloids in Cynoglossum officinale: Deterrent effects against generalist herbivores. J. Chem. Ecol. 21:507–523.Google Scholar
  10. DETZELA., and WINKM. 1993. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18.Google Scholar
  11. EL-SHAZLYA.SARGT.ATEYAA.ABDEL AZIZE.EL-DAHMYS.WITTEL. and WINKM. 1996a. Pyrrolizidine alkaloids from Echium setosum and Echium vulgare. J. Nat. Prod. 53:310–313.Google Scholar
  12. EL-SHAZLYA.SARGT.ATEYAA.ABDEL AZIZE.EL-DAHMYS.WITTEL. and WINKM. 1996b. Pyrrolizidine and tetrahydroisoquinoline alkaloids from Echium humile. Phytochemistry 42:225–230.Google Scholar
  13. EL-SHAZLYA.SARGT.ATEYAA.ABDEL AZIZE.WITTEL. and WINKM. 1996c. Pyrrolizidine alkaloids of Cynoglossum officinale and Cynoglossum amabile (Family Boraginaceae). Biochem. Syst. Ecol. 24:415–421.Google Scholar
  14. EL-SHAZLYA.SARGT.WITTEL. and WINKM. 1996d. Pyrrolizidine alkaloids from Cynoglossum creticum. Phytochemistry 42:1217–1221.Google Scholar
  15. ELLMANG. L.COURTNEYK. D.ANDRESV., and FEATHERSTONER. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.Google Scholar
  16. FONNUMF. 1966. A radiochemical method for the estimation of choline acetyltransferase. Biochem. J. 100:479–484.Google Scholar
  17. FONNUMF. 1975. A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24:407–409.Google Scholar
  18. GHODSIF., and WILLJ. A. 1981. Changes in pulmonary structure and function induced by monocrotaline intoxication. Am. J. Physiol. 240:H149–H155.Google Scholar
  19. HABSH.HABSM.MARQUARDTH.RÖDERE.SCHMÄHLD., and WEIDENFELDH. 1982. Carcinogenic and mutagenic activity of an alkaloidal extract of Senecio nemorensis spp. fuchsii. Arzneim. Forsch. 32:144–148.Google Scholar
  20. HARBORNEJ. B. 1993. Introduction to Ecological Biochemistry, 4th ed. Academic Press, London.Google Scholar
  21. HARTMANNT., and WITTEL. 1995. Chemistry, biology and chemoecology of pyrrolizidine alkaloids, pp. 155–233in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 9, Elsevier Science, Oxford.Google Scholar
  22. HILLIKERK. S.BELLT. G., and ROTHR. A. 1982. Pneumotoxicity and thrombocytopenia after single injection of monocrotaline. Am. J. Physiol. 242:H573–H579.Google Scholar
  23. HINCKSJ. R.KIMH. Y.SEGALLH. J.MOLYNEUXR. J.STERMITZF. R., and COULOMBER. A. JR., 1990. DNA cross-linking in mammalian cells by pyrrolizidine alkaloids: structure-activity relationship. Toxicol. Appl. Pharmacol. 111:90–98.Google Scholar
  24. HOLZINGERF. and WINKM. 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J. Chem. Ecol. 22:1931–1947.Google Scholar
  25. HOLZINGERF.FRICKC., and WINKM. 1992. Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett. 314:477–480.Google Scholar
  26. HUXTABLER. J. 1979. Pyrrolizidine alkaloids and the lung endothelium: a paradigm of lung damage resulting from circulating toxins, pp. 43–56in P. R. Cheeke (ed.). Pyrrolizidine (Senecio) Alkaloids: Toxicity, Metabolism and Poisonous Plant Control Measures. Oregon State University, Corvallis.Google Scholar
  27. HUXTABLER. J. 1990. Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacol. Ther. 47:371–389.Google Scholar
  28. KAYJ. KEANEP. M.SUYAMAK. L., and GAUTHIERD. 1982. Angiotensin converting enzyme activity and evolution of pulmonary vascular disease in rats with monocrotaline pulmonary hypertension. Thorax 37:88–96.Google Scholar
  29. LOWRYO. H.ROSEBROUGHN. J.FARRA. L., and RANDALLR. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  30. MANSTEINB. 1953. Senecion, ein uteruswirksames Mittel bei funktionellen Blutungen. Zentralbl. Gynaekol. 75:1672–1675.Google Scholar
  31. MANSTEINB. 1959. Der Einfluss von Senecion auf die Gerinnungsfaktoren. Aerztl. Forsch. 13:32–34.Google Scholar
  32. MASTERSA. R. 1991. Dual role of pyrrolizidine alkaloids in nectar. J. Chem. Ecol. 17:195–205.Google Scholar
  33. MATTOCKSA. R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, London.Google Scholar
  34. MEIERB. 1994. Die Pestwurz-Stand der Forschung. Z. Phytother. 15:268–284.Google Scholar
  35. MEYRICKB.GAMBLEW., and REIDL. 1980. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am. J. Physiol. 239:H692–H702.Google Scholar
  36. MISERJ. S.SMITHONW. A.KRIVITW.HUGHESC. H. DAVISD.KRAILOM. D., and HAMMONDG. D. 1991. Phase II trial of indicine N-oxide in relapsed pediatric solid tumors. A report from the Children's Cancer Study Group. Invest. New Drugs 9:339–342.Google Scholar
  37. MISERJ. S.SMITHSONW. A.KRIVITW.HUGHESC. H.DAVISD.KRAILOM. D., and HAMMONDG. D. 1992. Phase II trial of indicine N-oxide in relapsed acute leukemia of childhood. A report from the Children's Cancer Study Group. Am. J. Clin. Oncol. 15:135–140.Google Scholar
  38. NICKISCH-ROSENEGKE.VONand WINKM. 1993. Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae). J. Chem. Ecol. 19:1889–1903.Google Scholar
  39. NICKISCH-ROSENEGKE.VONand WINKM. 1995. Influence of previous feeding regimes and ambient temperatures on degradation and storage of pyrrolizidine alkaloids in the moth species Creatonotos transiens (Lepidoptera: Arctiidae). Entomol. Gen. 19:157–170.Google Scholar
  40. PETERKAM.SARINS.ROEDERE.WIEDENFELDH., and HALASKOVAM. 1994. Differing embryotoxic effects of senecionine and senecionine-N-oxide on the chick embryo. Funct. Dev. Morphol. 4:89–92.Google Scholar
  41. POMEROYA. R., and RAPERC. 1971a. Pyrrolizidine alkaloids: Actions on muscarinic receptors in the guinea-pig ileum. Br. J. Pharmacol. 00:683–690.Google Scholar
  42. POMEROYA. R., and RAPERC. 1971b. Pyrrolizidine aminoalcohols: Indirect cholinomimetic activity in guinea-pig ileum. Eur. J. Pharmacol. 14:374–383.Google Scholar
  43. POOLB. L. 1982. Genotoxic activity of an alkaloidal extract of Senecio nemorensis ssp. fuchsii in Salmonella typhimurium and Escherichia coli systems. Toxicology 24:351–355.Google Scholar
  44. ROEDERE. 1995. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98.Google Scholar
  45. ROSENTHALG. A., and BERENBAUMM. R. 1991. Herbivores. Their Interactions with Secondary Plant Metabolites, 2nd ed. Academic Press, San Diego.Google Scholar
  46. ROSENTHALG. A. and BERENBAUMM. R. 1992. Herbivores. Their Interactions with Secondary Plant Metabolites, 2nd ed. Academic Press, San Diego.Google Scholar
  47. ROTHSCHILDM. 1972. Secondary plant substances and warning colouration in insects, pp. 59–83in H. F. van Emden (ed.). Insect/Plant Relationships, Vol. 6, Blackwell, Oxford.Google Scholar
  48. ROTHSCHILDM.VON EUWJ., and REICHSTEINT. 1972. Some problems connected with warningly coloured insects and toxic defense mechanism. Mitt. Basler Afr. Bibliogr. 4:135–158.Google Scholar
  49. SCHMELLERT.SAUERWEINM.SPORERF.WINKM., and MÜLLERW. E. 1994. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors. J. Nat. Prod. 57:1316–1319.Google Scholar
  50. SCHMELLERT.SPORERF.SAUERWEINM., and WINKM. 1995. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 50:493–495.Google Scholar
  51. SCHMELLERT.LATZ-BRÜNINGB., and WINKM. 1997. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry. 44:257–266.Google Scholar
  52. SCHNEIDERD. 1986. The strange fate of pyrrolizidine alkaloids, pp. 123–142in R. F. Chapman, E. A. Bernays and J. G. Stoffolano (eds.). Perspectives in Chemoreception Behaviour. Springer-Verlag, Berlin.Google Scholar
  53. SCHNEIDERD.BOPPRÉM.ZWEIGJ.HORSELEYS. B.BELLT. W.MEINWALDJ.HANSENK., and DIEHLE. W. 1982. Scent organ development in Creatonotos moths: Regulation by pyrrolizidine alkaloids. Science 215:1264–1265.Google Scholar
  54. SCHULTZEA. E., and ROTHR. A. 1993. Fibrinolytic activity in blood and lungs of rats treated with monocrotaline. Toxicol. Appl. Pharmacol. 121:129–137.Google Scholar
  55. TAYLORD. L.NASHR.FELLOWSL. E.KANGM. S., and TYMSA. S. 1992. Naturally occurring pyrrolizidines: inhibition of a-glucosidase and anti HIV activity of one steroisomer. Antivir. Chem. Chemother. 3:273–277.Google Scholar
  56. TURNERJ. H., and LALICHJ. J. 1965. Experimental cor pulmonale in the rat. Arch. Pathol. 79:409–418.Google Scholar
  57. VALDIVIAE.LALICHJ. J.HAYASHIY., and SONNADJ. 1967. Alterations in pulmonary alveoli after a single injection of monocrotaline. Arch. Pathol. 84:64–76.Google Scholar
  58. WAGNERJ. G.PETRYT. W., and ROTHR. A. 1993. Characterization of monocrotaline pyrrole-induced DNA cross-linking in pulmonary artery endothelium. Am. J. Physiol. 264:L517–L522.Google Scholar
  59. WIESSLERM. 1994. DNA adducts of pyrrolizidine alkaloids, nitroimidazoles and aristolochic acid. I.A.R.C., Sci. Publ. 165–177.Google Scholar
  60. WILSOND. W.SEGALLH. J.PANL. C.LAMEM. W.ESTEPJ. E., and MORIND. 1992. Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit. Rev. Toxicol. 22:307–325.Google Scholar
  61. WINKM. 1992. The role of quinolizidine alkaloids in plant insect interactions, pp. 133–169in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. IV, CRC Press, Boca Raton, Florida.Google Scholar
  62. WINKM. 1993. Allelochemical properties or the raison d'être of alkaloids, pp. 1–118in G. Cordell (ed.). The Alkaloids, Vol. 43. Academic Press, New York.Google Scholar
  63. WINKM., and LATZ-BRÜNINGB. 1995. Allelopathic properties of alkaloids and other natural products: Possible modes of action, pp. 117–126in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds). Allelopathy: Organisms, Processes and Applications. ACS Symposium Series 582, American Chemical Society, Washington, D.C.Google Scholar
  64. WINKM., and TWARDOWSKIT. 1992. Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis, pp. 129–150in S. J. H. Rizvi, and V. Rizvi (eds.). Allelopathy: Basic and Applied Aspects. Chapman & Hall, London.Google Scholar
  65. WINKM.LATZ-BRÜNINGB., and SCHMELLERT. 1997. Biochemical mechanisms responsible for allelopathic activities of alkaloidsin K. M. M. Dakshini and Inderjit (eds.). Allelopathy: Procedures and Processes. In press.Google Scholar
  66. WINKM.MEISSNERC., and WITTEL. 1995. Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153.Google Scholar
  67. YAMAMURAH. I. and SNYDERS. H. 1974. Muscarinic cholinergic binding in rat brain. Proc. Nat. Acad. Sci. U.S.A. 71:1725–1729.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • T. Schmeller
    • 1
  • A. El-Shazly
    • 1
    • 2
  • M. Wink
    • 1
  1. 1.Institut für Pharmazeutische BiologieUniversität HeidelbergHeidelbergGermany
  2. 2.Department of Pharmacognosy, Faculty of PharmacyUniversity of ZagazigZagazigEgypt

Personalised recommendations