Journal of Chemical Ecology

, Volume 23, Issue 2, pp 259–273 | Cite as

A Natural Algacide from Soft Coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea)

  • Kirsten Michalek
  • Bruce F. Bowden


A crude lipophilic extract and specific pure metabolites of the soft coral Sinularia flexibilis have been examined for algacidal properties both in laboratory and field experiments. Laboratory algal bioassays, in which cultures of the common fouling alga Ceramium codii were incubated with six different diterpenes isolated from S. flexibilisrevealed that 11-episinulariolide exhibits strong algacidal properties. Field experiments carried out with treated settlement tiles confirmed the laboratory findings and provided evidence for the algacidal properties of 11-episinulariolide against several other common reef algae. Sinulariolide, which had previously been reported to inhibit the growth of unicellular algae, was approximately one third as effective as its stereoisomer 11-episinulariolide in the laboratory growth inhibition bioassay and showed no significant algacidal properties at the concentrations used in the field experiments.

Sinularia flexibilis Ceramium codii algal bioassay natural algacide sinulariolide 11-episinulariolide chemical defense biofouling marine antifoulants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANONYMOUS 1992. Anti-fouling technology: Tin-based alternatives all round. Seatrade Rev. October:33–41.Google Scholar
  2. BAKR. P. M., and BORSBOOMJ. L. A. 1984. Allelopathic interaction between a reef coelenterate and benthic algae. Oecologia 63:194–198.Google Scholar
  3. BATLEYG. E.MANK. J.BROCKBANKC. I., and MALTZA. 1989. Tributyl tin in Sydney Harbour and Georges River Waters. Aust. J. Mar. Freshwater Res. 40:39–48.Google Scholar
  4. BOWDENB. F.ALINOP. M., and COLLJ. C. 1992. Soft Corals and their toxins, pp. 55–64in D. Watters, M. Lavin, D. Maguire, and J. Pearn (eds.). Toxins and Targets. Harwood Academic, Melbourne.Google Scholar
  5. CALLOWM. E. 1986. A world-wide survey of slime formation on antifouling agents, pp. 1–20in L. V. Evans and K. D. Hoagland (eds.). Algal Biofouling. Elsevier Scientific, Amsterdam.Google Scholar
  6. COLLJ. D., and BOWDENB. F. 1986. The application of vacuum liquid chromatography to the separation of terpene mixtures. J. Nat. Prod. 49(5):934–936.Google Scholar
  7. COLLJ. C.BOWDENB. F.TAPIOLASD. M., and DUNLAPW. C. 1982. In situ isolation of allelochemicals released from soft corals (Coelenterata: Octocorallia): A totally submersible sampling apparatus J. Exp. Mar. Biol. Ecol. 60:293–299.Google Scholar
  8. COLLJ. C.PRICEI. R.KOENIGG. M., and BOWDENB. F. 1987 Algal overgrowth of alcyonacean soft corals. Mar. Biol. 96:129–135.Google Scholar
  9. COLLJ. C.BOWDENB. F.ALINOP. M.HEATONA.KOENIGG. M.DE NYSR.SAMMARCOP. W., and CLAYTONM. N. 1989. Chemically mediated interactions between marine organisms. Chem. Scr. 29:383–388.Google Scholar
  10. COLLJ. C.BOWDENB. F., and CLAYTONM. N. 1990. Chemistry and coral reproduction. Chem. Br. 26(8):761–376.Google Scholar
  11. DAIC. 1990. Interspecies competition in Taiwanese corals with special reference to interactions between alcyononians and scleractinians. Mar. Ecol. Progr. Ser. 60:291–297.Google Scholar
  12. DAVISA. R.TARGETTN. M.MC CONNELLO. J., and YOUNGC. M. 1989. Epibiosis of marine algae and benthic invertebrates: Natural products chemistry and mechanisms inhibiting settlement and overgrowth, pp. 85–114in P. J. Scheuer (ed.). Bioorganic Marine Chemistry, Vol. 3. Springer Verlag, Berlin.Google Scholar
  13. DE BOERJ. A., and WHORSKEYF. G. 1983. Production and role of hyaline hairs in Ceramium rubrum. Mar. Biol. 77:229–234.Google Scholar
  14. GERHARTD. J.RITTSCHOFD., and MAYOS. W. 1988. Chemical ecology and the search for marine antifoulants. J. Chem. Ecol. 14:1905–1917.Google Scholar
  15. HARBORNEJ. B. 1988. Phytochemical Methods, 2nd ed. Chapman Hall, London, pp. 214–219.Google Scholar
  16. HARRIOTV. J., and FISKD. A. 1985. A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Mar. Ecol. Prog. Ser. 37:201–208.Google Scholar
  17. HUNTR. 1982. Plant Growth Curves. Thomson Litho, East Kilbride, Scotland, pp. 16–22.Google Scholar
  18. KAZLAUSKAS R.MURPHYP. T.WELLSR. J.SCHONHOLZERP., and COLLJ. C. 1975. Cembranoid constituents from an Australian collection of the soft coral Sinularia flexibilis. Aust. J. Chem. 31:1817–1824.Google Scholar
  19. KITTREDGEJ. S.TAKAHASHIF. T.LINDSEYJ., and LASKERR. 1974. Chemical signals in the sea: Marine allelochemicals and evolution. Fish. Bull. 72:1–11.Google Scholar
  20. LA BARRES. C.COLLJ. C., and SAMMARCOP. W. 1986. Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef. 2. The relationship between toxicity and feeding deterrence. Biol. Bull. 171:565–576.Google Scholar
  21. LAMBERTIG. A., and RESHV. H., 1985. Comparability of introduced tiles and natural substrates for sampling lotic bacteria, algae and macroinvertebrates. Freshwater Biol. 15:21–30.Google Scholar
  22. LAUM. M. M. 1991. Tributyltin antifoulants: A threat to the Hong Kong marine environment. Arch. Environ. Contam. Toxicol. 20:299–304.Google Scholar
  23. LENIHANH. S.OLIVERJ. S., and STEPHENSONM. A. 1990. Changes in hard bottom communities related to boat mooring and tributyltin in San Diego Bay (California, USA): A natural experiment. Mar. Ecol. Prog. Ser. 60:147–160.Google Scholar
  24. MAIDAM. 1993. Allelopathic effects of Alcyonacean soft corals on the settlement and early development of scleractinian corals. PhD thesis. James Cook University of North Queensland, Townsville.Google Scholar
  25. MAIDAM.CARROLLA. R., and COLLJ. C. 1993. Variability of terpene content in the soft coral Sinularia flexibilis (Coelenterata, Octocorallia) and its ecological implications J. Chem. Ecol. 19:2285–2296.Google Scholar
  26. MORIK.SUZUKIS.IGUCHIK., and YAMADAY. 1983. 8,11-Epoxy bridged cembranolide diterpene from the soft coral Sinularia flexibilis. Chem. Lett. 10:1515–1516.Google Scholar
  27. MORRISSEYJ. 1980. Community structure and zonation of macroalgae and hermatypic corals on a fringing reef flat of Magnetic Island (Queensland, Australia). Aquat. Bot. 8:91–139.Google Scholar
  28. PRICEI. R., and SCOTTF. J. 1992. The Turf Algal Flora of the Great Barrier Reef. Part 1, Rhodophyta. James Cook University of North Queensland, Townsville, 266 pp.Google Scholar
  29. SAMMARCOP. W., and COLLJ. C. 1988. The chemical ecology of alcyonarian corals, pp. 87–115in P. J. Scheuer (ed.). Bioorganic Marine Chemistry, Vol. 2. Springer-Verlag, Berlin.Google Scholar
  30. TURSCHB. 1976. Some recent developments in the chemistry of alcyonaceans. Pure Appl. Chem. 48:1–6.Google Scholar
  31. TURSCHB.BRAEKMANJ. C.DALOZED.HERINM.KARLSSONR., and LOSMAND. 1975. Chemical studies of marine invertebrates—IX: Sinulariolide, a new cembranoid diterpene from the soft coral Sinularia flexibilis (Coelenterata, Octocorallia, Alcyonacea). Tetrahedron 31:129–133.Google Scholar
  32. VON STOSCHH. A. 1964. Wirkungen von Jod und Arsenit auf Meeresalgen in Kultur, pp. 142–145 in A. D. Davy de Virille, and J. Feldman (eds.). Comptes Rendus du 6 Congres International des Algues Marines. Symposium Publications Division, Pergamon Press, Oxford.Google Scholar
  33. WEBB L., and COLLJ. C. 1983. Effects of alcyonarian coral terpenes on scleractinian coral photosynthesis and respiration. Toxicon Suppl. 3:458–488.Google Scholar
  34. WYLIEC. R., and PAULV. J. 1989. Chemical defenses in three species of Sinularia (Coelenterata, Alcyonacea): Effects against generalist predators and the butterflyfish Chaetodon unimaculata Bloch. J. Exp. Mar. Biol. Ecol. 129:141–160.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Kirsten Michalek
    • 1
  • Bruce F. Bowden
    • 1
  1. 1.Department of Chemistry and Chemical Engineering, School of Molecular SciencesJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations