Advertisement

Journal of Dynamical and Control Systems

, Volume 10, Issue 4, pp 501–525 | Cite as

Normalizability, Synchronicity, and Relative Exactness for Vector Fields in C2

  • C. Christopher
  • P. Mardešić
  • C. Rousseau
Article

Abstract

In this paper, we study the necessary and su.cient condition under which an orbitally normalizable vector field of saddle or saddle-node type in C2is analytically conjugate to its formal normal form (i.e., normalizable) by a transformation fixing the leaves of the foliation locally.

First, we express this condition in terms of the relative exactness of a certain 1-form derived from comparing the time-form of the vector field with the time-form of the normal form. Then we show that this condition is equivalent to a synchronicity condition: the vanishing of the integral of this 1-form along certain asymptotic cycles de.ned by the vector field. This can be seen as a generalization of the classical Poincaré theorem saying that a center is isochronous (i.e., synchronous to the linear center) if and only if it is linearizable.

The results, in fact, allow us in many cases to compare any two vector fields which differ by a multiplicative factor. In these cases we show that the two vector fields are analytically conjugate by a transformation fixing the leaves of the foliation locally if and only if their time-forms are synchronous.

Keywords

Vector Field System Theory Normal Form Normalizable Vector Multiplicative Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Berthier and D.Cerveau,Quelques calculs de cohomologie relative. Ann.Sci.école Norm.Sup.26(1993),403–424.Google Scholar
  2. 2.
    M.Berthier, D.Cerveau,and R.Meziani,Transformations isotropes des germes de feuilletages holomorphes.J.Math.Pures Appl.78(1999), 701–722.Google Scholar
  3. 3.
    M.Berthier and F.Loray,Cohomologie relative des formes résonnantes non dégénérées.Asymptot.Anal. 15(1997),41–54.Google Scholar
  4. 4.
    A.D. Brjuno,Analytic form of differential equations.Trans.Moscow Math.Soc.25(1971),131–288.Google Scholar
  5. 5.
    C.Camacho,On the local structure of conformal mappings and holo-morphic elds in C 2.Astérisque 59-60(1978),83–94.Google Scholar
  6. 6.
    C.Christopher, P.Marde ši ć,and C.Rousseau,Normalizable,inte-grable,and linearizable saddle points in complex quadratic systems in C 2.J.Dynam.Control Systems 9(2003),No.3,31–364.Google Scholar
  7. 7.
    H.Dulac,Sur les cycles limites.Bull.Soc.Math.France 51(1923), 45–188.Google Scholar
  8. 8.
    H.Hukuhara, T.Kimura,and T.Matuda,équations différentielles or-dinaires du premier ordre dans le champ complexe.Math.Soc.of Japan(1961).Google Scholar
  9. 9.
    V.Kostov,Versal deformations of differential forms of degree á on the line.Funct.Anal.Appl.18(1984),335–337.Google Scholar
  10. 10.
    J.Martinet and J.-P. Ramis,Classi cation analytique deséquations non linéaires résonnantes du premier ordre.Ann.Sci.école Norm.Sup.(4) 16 (1983),571–621.Google Scholar
  11. 11.
    J.-F. Mattei and R.Moussu,Holonomie et intégrales premiéres.Ann. Sci.école Norm.Sup.(413 (1980),469–523.Google Scholar
  12. 12.
    N.Pazii,Local analytic classi cation of equations of Sobolev's type. Thesis,Chelyabynsk,Russia(1999).Google Scholar
  13. 13.
    R. Pérez-Marco and J.-C.Yoccoz,Germes de feuilletages holomorphes à holonomie prescrite.Astérisque 222(1994),345–371.Google Scholar
  14. 14.
    S.M. Voronin and A.A.Grinchy,Analytic classi cation of saddle reso-nant singular points of holomorphic vector elds on the complex plane. Preprint.Google Scholar
  15. 15.
    S.M. Voronin and Yu.I.Meshcheryakova,Analytic classi cation of typical degenerate elementary singular points of germs of holomorphic vector elds in the complex plane.Izv.Vyssh.Uchebn.Zaved.1(2002).Google Scholar
  16. 16.
    L.Teyssier,équation homologique et classi cation analytique des ger-mes de champ de vecteurs holomorphe de type næud-col.Thesis,Univ. de Rennes 1(2003),pp.1–156.Google Scholar
  17. 17.
    ______,équation homologique et cycles asymptotiques d'une singu-larité næud-col.Preprint,Univ.de Rennes 1,pp.1–18.Google Scholar
  18. 18.
    ______,Analytical classi cation of singular saddle-node vector elds.Preprint,Univ.de Rennes 1,pp.1–25.Google Scholar
  19. 19.
    S.Yakovenko,Smooth normalization of a vector eld near a semistable limit cycle.Ann.Inst.Fourier 43(1993),893–903.Google Scholar
  20. 20.
    J.-C.Yoccoz,Théoréme de Siegel,nombres de Brjuno et polynômes quadratiques.Astérisque 231(1995),3–88.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • C. Christopher
    • 1
  • P. Mardešić
    • 2
  • C. Rousseau
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of PlymouthPlymouth, DevonU.K
  2. 2.Laboratoire de Topologie, Unité mixte de recherche 5584 du C.N.R.S.Université de BourgogneDijon CedexFrance
  3. 3.Département de mathématiques et de statistique and CRMUniversité de MontréalQuébecCanada

Personalised recommendations