Journal of Cluster Science

, Volume 14, Issue 3, pp 405–419 | Cite as

Functional Polyoxometalate Thin Films via Electrostatic Layer-by-Layer Self-Assembly

  • Shaoqin Liu
  • Dirk Volkmer
  • Dirk G. KurthEmail author


Polyoxometalates (POMs) comprise a structurally diverse class of inorganic transition metal oxygen clusters which—owing to their unique electronic properties—hold promise for a host of technological applications such as electrochromic windows, sensors, or heterogeneous catalysts, prototypic examples of which will be briefly exemplified. The integration of POMs into functional architectures and devices, however, necessitates the development of general methods that allow positioning these clusters in well-defined supramolecular architectures, thin films, or mesophases. This short review highlights recent advances in the preparation of composite multilayers fabricated by electrostatic layer-by-layer self-assembly (ELSA) of POMs and a variety of water-soluble cationic species, including transition metal complexes, cationic surfactants, polycations and bipolar pyridine.

polyoxometalates electrostatic layer-by-layer self-assembly thin films electrochromic devices sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.PubMedGoogle Scholar
  2. 1.
    (b) N. Mizuno and M. Misono (1998). Chem. Rev. 98, 199.Google Scholar
  3. 2.
    (a) I. A. Weinstock (1998). Chem. Rev. 98, 113.PubMedGoogle Scholar
  4. 2.
    (b) M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.PubMedGoogle Scholar
  5. 3.
    T. Yamase (1998). Chem. Rev. 98, 307.PubMedGoogle Scholar
  6. 4.
    J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi (1998). Chem. Rev. 98, 327.PubMedGoogle Scholar
  7. 5.
    D. E. Katsoulis (1998). Chem. Rev. 98, 359.PubMedGoogle Scholar
  8. 6.
    J. F. Keggin (1933). Nature 131, 908.Google Scholar
  9. 7.
    Intriguing examples include the “giant wheel,” the Keplerate cluster, or the very recently discovered “nano-hedgehog.” (a) A. Muller, E. Krickemeyer, J. Meyer, H. Bogge, F. Peters, W. Plass, E. Diemann, S. Dillinger, F. Nonnenbruch, M. Randerath, and C. Menke (1995). Angew. Chem. Int. Ed. Engl. 34, 2122.Google Scholar
  10. 7.
    (b) A. Muller, E. Krickemeyer, H. Bogge, M. Schmidtmann, and F. Peters (1998). Angew. Chem. Int. Ed. Engl. 37, 3360.Google Scholar
  11. 7.
    (c) A. Muller, E. Beckmann, H. Bogge, M. Schmidtmann, and A. Dress (2002). Angew. Chem. Int. Ed. Engl. 41, 1162.PubMedGoogle Scholar
  12. 8.
    (a) M. T. Pope, in D. B. Brown (ed.), Mixed Valence Compounds (Reidel, Dordrecht, 1980), pp. 365.Google Scholar
  13. 8.
    (b) M. T. Pope (1991). Prog. Inorg. Chem. 39, 181.Google Scholar
  14. 9.
    M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.PubMedGoogle Scholar
  15. 10.
    (a) A. Muller, S. K. Das, M. O. Talismanova, H. Bogge, P. Kogerler, M. Schmidtmann, S. S. Talismanov, M. Luban, and E. Krickemeyer (2002). Angew. Chem. Int. Ed. Engl. 41, 579.Google Scholar
  16. 10.
    (b) A. Muller, E. Krickemeyer, S. K. Das, P. Kogerler, S. Sarkar, H. Bogge, M. Schmidtmann, and S. Sarkar (2000). Angew. Chem. Int. Ed. Engl. 39, 1612.PubMedGoogle Scholar
  17. 10.
    (c) A. Muller, E. Diemann, C. Kuhlmann, W. Eimer, C. Serain, T. Tak, A. Knochel, and P. K. Pranzas (2001). Chem. Commun., 1928.Google Scholar
  18. 10.
    (d) T. Liu (2002). J. Am. Chem. Soc. 124, 10942.PubMedGoogle Scholar
  19. 10.
    (e) T. Liu, Q. Wan, Y. Xie, C. Burger, L.-Z. Liu, and B. Chu (2001). J. Am. Chem. Soc. 123, 10966.PubMedGoogle Scholar
  20. 10.
    (f) T. Liu (2003). J. Am. Chem. Soc. 125, 312.PubMedGoogle Scholar
  21. 11.
    J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, and H. Yu (1987). Langmuir 3, 932.Google Scholar
  22. 12.
    (a) D. G. Kurth, P. Lehmann, D. Volkmer, A. Muller, and D. Schwahn (2000). J. Chem. Soc. Dalton Trans. 21, 3989.Google Scholar
  23. 12.
    (b) D. Volkmer, A. Du Chesne, D. G. Kurth, H. Schnablegger, P. Lehmann, M. J. Koop, and A. Muller (2000). J. Am. Chem. Soc. 122, 1995.Google Scholar
  24. 12.
    (c) D. G. Kurth, P. Lehmann, D. Volkmer, H. Colfen, M. J. Koop, A. Muller, and A. Du Chesne (2000). Chem. Eur. J. 6, 385.Google Scholar
  25. 13.
    D. Volkmer, B. Bredenkotter, J. Tellenbroker, P. Kogerler, D. G. Kurth, P. Lehmann, H. Schnablegger, D. Schwahn, M. Piepenbrink, and B. Krebs (2002). J. Am. Chem. Soc. 124, 10489.PubMedGoogle Scholar
  26. 14.
    G. Decher (1997). Science 277, 1232.Google Scholar
  27. 15.
    D. G. Kurth and T. Bein (1995). Langmuir 11, 3061.Google Scholar
  28. 16.
    (a) V. Chechik and C. J. M. Stirling, in S. Patai and Z. Rappoport (Eds.), The Chemistry of Organic Derivatives of Gold and Silver (Wiley, 1999), pp. 551.Google Scholar
  29. 16.
    (b) A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly (Academic Press, New York, 1991).Google Scholar
  30. 17.
    D. G. Kurth and R. Osterhout (1999). Langmuir 15, 4842.Google Scholar
  31. 18.
    (a) D. Ingersoll, P. J. Kulesza, and L. R. Faulkner (1994). J. Electrochem. Soc. 141, 140.Google Scholar
  32. 18.
    (b) A. Kuhn and F. C. Anson (1996). Langmuir 12, 5481.Google Scholar
  33. 18.
    (c) C. Q. Sun and J. D. Zhang (1998). Electrochim. Acta 43, 943.Google Scholar
  34. 18.
    (d) L. Cheng and S. J. Dong (1999). Electrochem. Commun. 1, 159.Google Scholar
  35. 19.
    (a) I. Moriguchi and J. H. Fendler (1998). Chem. Mater. 10, 2205.Google Scholar
  36. 19.
    (b) I. Ichinose, H. Tagawa, S. Mizuki, Y. Lvov, and T. Kunitake (1998). Langmuir 14, 187.Google Scholar
  37. 20.
    D. G. Kurth, D. Volkmer, M. Ruttorf, B. Richter, and A. Muller (2000). Chem. Mater. 12, 2829.Google Scholar
  38. 21.
    F. Caruso, D. G. Kurth, D. Volkmer, M. J. Koop, and A. Muller (1998). Langmuir 14, 3462.Google Scholar
  39. 22.
    (a) S. Liu, D. G. Kurth, B. Bredenkotter, and D. Volkmer (2002). J. Am. Soc. Chem. 124, 12279.Google Scholar
  40. 22.
    (b) S. Liu, D. G. Kurth, and D. Volkmer (2002). Chem. Commun., 976.Google Scholar
  41. 23.
    (a) S. Liu, D. G. Kurth, H. Mohwald, and D. Volkmer (2002). Adv. Mater. 14, 225.Google Scholar
  42. 23.
    (b) L. Xu, H. Y. Zhang, E. Wang, D. G. Kurth, and Z. Li (2002). J. Mater. Chem. 12, 654.Google Scholar
  43. 24.
    (a) A. Kuhn, N. Mano, and C. Vidal (1999). J. Electroanal. Chem. 462, 187.Google Scholar
  44. 24.
    (b) Z. H. Chen, Y. Ma, X. T. Zhang, B. Liu, and J. N. Yao (2001). J. Coll. Inter. Sci. 240, 487.Google Scholar
  45. 25.
    L. Cheng and J. A. Cox (2002). Chem. Mater. 14, 6.Google Scholar
  46. 26.
    M. Losche, J. Schmitt, G. Decher, W. G. Bouwman, and K. Kjaer (1998). Macromolecules 31, 8893.Google Scholar
  47. 27.
    J. Schmitt, T. Grunewald, G. Decher, P. S. Pershan, K. Kjaer, and M. Losche (1993). Macromolecules 26, 7058.Google Scholar
  48. 28.
    M. Tarabia, H. Hong, D. Davidov, S. Kirstein, R. Steitz, R. Neumann, and Y. Avny (1998). J. Appl. Phys. 83, 725.Google Scholar
  49. 29.
    M. R. Antonio and L. Soderholm (1997). J. Alloys Compounds 250, 541.Google Scholar
  50. 30.
    A. Mahmoud, B. Keita, L. Nadjo, O. Oung, R. Contant, S. Brown, and Y. de Kouchkovsky (1999). J. Electroanal. Chem. 463, 129.Google Scholar
  51. 31.
    J. Lin (2000). Trends Anal. Chem. 19, 541.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Max Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Faculty of Chemistry, AC1University of BielefeldBielefeldGermany

Personalised recommendations