Advertisement

Journal of Atmospheric Chemistry

, Volume 47, Issue 3, pp 243–269 | Cite as

AGAGE Observations of Methyl Bromide and Methyl Chloride at Mace Head, Ireland, and Cape Grim, Tasmania, 1998–2001

  • P. G. Simmonds
  • R. G. Derwent
  • A. J. Manning
  • P. J. Fraser
  • P. B. Krummel
  • S. O'Doherty
  • R. G. Prinn
  • D. M. Cunnold
  • B. R. Miller
  • H. J. Wang
  • D. B. Ryall
  • L. W. Porter
  • R. F. Weiss
  • P. K. Salameh
Article

Abstract

In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).

halomethanes methyl bromide methyl chloride trends annual cycle baseline mole factions sources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassford, M. R., Nickless, G., Simmonds, P. G., Lewis, A. C., Pilling, M. J., and Evans, M. J., 1999: The concurrent observation of methyl iodide and dimethyl sulphide in marine air; implications for sources of atmospheric methyl iodide, Atmos. Environ. 33, 2373–2383.CrossRefGoogle Scholar
  2. Beardsmore, D. J. and Pearman, G. I., 1987: Atmospheric carbon dioxide measurements in the Australian Region: data from surface observatories, Tellus 39B, 42–66.Google Scholar
  3. Butler, J. H., 2000: Better budgets for methyl halides? Nature 403, 260–261.Google Scholar
  4. Cox, M. L., 2001: A regional study of the natural and anthropogenic sources and sinks of the major halomethanes, PhD Thesis, Monash University, Australia, 2001.Google Scholar
  5. Cox, M. L., Sturrock, J. A., Fraser, P. J., Siems, S., Krummel, P., and O'Doherty, S., 2003a: Regional sources of methyl chloride, chloroform and dichloromethane, identified from AGAGE observations at Cape Grim, Tasmania 1988–2000, J. Atmos. Chem. 45, 79–99.CrossRefGoogle Scholar
  6. Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S., and Krummel, P. B., 2003b: Identification of regional sources of methyl bromide and methyl iodide from AGAGE observations at Cape Grim, Tasmania, J. Atmos. Chem., in preparation.Google Scholar
  7. Crill, P. M., 2000: Natural terrestrial sources and sinks of tropospheric methyl bromide, IGACtivities, 19, 13–15.Google Scholar
  8. Derwent R. G., Simmonds, P. G., O'Doherty, S., Ciais, P., and Ryall, D. B., 1998a: European source strengths and Northern Hemisphere baseline concentrations of radiatively active trace gases at Mace Head, Ireland, Atmos. Environ. 32, 3703–3715.Google Scholar
  9. Derwent, R. G., Simmonds, P.G., Seuring, S., and Dimmer, C., 1998b: Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994, Atmos. Environ. 32, 145–147.Google Scholar
  10. Derwent, R. G., Ryall, D. B., Manning, A. J., Simmonds, P. G., O'Doherty, S., Biraud, S., Ciais, P., Ramonet, M., and Jennings, S. G., 2002: Continuous observations of carbon dioxide at Mace Head, Ireland from 1995 to 1999 and its net European ecosystem exchange, Atmos. Environ. 36, 2799–2807.CrossRefGoogle Scholar
  11. Dimmer, C. H., Simmonds, P. G., Nickless, G. N., and Bassford, M. R., 2001: Biogenic fluxes of halomethanes from Irish peatland ecosystems, Atmos. Environ. 31, 321–330.Google Scholar
  12. Goodwin, J. W. L., Salway, A. G., Murrells, T. P., Dore, C. J., Passant, N. R., King, K. R., Coleman, P. J., Hobson, M. M., Pye, S. T., and Watterson, J. D., 2001: U.K. emissions of air pollutants 1970–1999, AEA Technology Report AEAT/ENV/R/0798, Oxfordshire, U.K.Google Scholar
  13. Harper, D. B., 1985: Halomethane from halide ion — a highly efficient fungal conversion of environmental significance, Nature 315, 55–57.CrossRefGoogle Scholar
  14. IPCC, 2001: Climate change 2001. The scientific basis, Intergovernmental Panel on Climate Change, Cambridge University Press, U.K.Google Scholar
  15. Khalil, M. A. K. and Rasmussen, R. A., 1999: Atmospheric methyl chloride, Atmos. Environ. 33, 1305–1321.Google Scholar
  16. King, D. B., Butler, J. H., Montzka, S. A., Yvon-Lewis, S. A., and Elkins, J. W., 2000: Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean, J. Geophys. Res. 105, 19763–19769.Google Scholar
  17. Keppler, F., Elden, R., Niedan, V., Pracht, J., and Scholer, H. F., 2000: Halocarbons produced by natural oxidation processes during degradation of organic matter, Nature 403, 298–301.CrossRefGoogle Scholar
  18. Lagenfelds, R. L., Francey, R. J., Pak, B. C., Steele, L. P., Lloyd, J., Trudinger, C. M., Allison, C. E., 2002, Interannual growth rate variations of atmospheric CO2 and its δ 13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning, Global Geochem. Cycles 16, 1048, doi:10.1029/2001/GB001466.Google Scholar
  19. Li, H-J., Yokouchi, Y., and Akimoto, H., 1999: Measurement of methyl halides in the marine atmosphere, Atmos. Environ. 33, 1881–1887.Google Scholar
  20. Lobert, J. M., Yvon-Lewis, S. A., Butler, J. H., Montzka, S. A., and Myers, R. C., 1997: Undersaturations of CH3Br in the Southern Ocean, Geophys. Res. Lett. 24, 171–172.CrossRefGoogle Scholar
  21. Manning, A. J., Ryall, D. B., Derwent, R. G., Simmonds, P. G., and O'Doherty, S., 2002: Estimating European emissions of ozone-depleting and greenhouse gases using observations and a modelling back-attribution technique, J. Geophys. Res. 108(D14), 4404.Google Scholar
  22. Manö, S. and Andreae, M. O., 1994: Emission of methyl bromide from biomass burning, Science 263, 1255–1257.Google Scholar
  23. McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M., and Li, Y.-F., 1999: Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities, J. Geophys. Res. 104, 8391–8403.Google Scholar
  24. Miller, B. R., 1998: Abundances and trends of atmospheric chlorodifluoromethane and bromomethane, PhD Thesis, University of California, San Diego, p. 149.Google Scholar
  25. Miller, B. R., Huang, J., Weiss, R. F., Prinn, R. G., and Fraser, P. J., 1998: Atmospheric trend and lifetime of chlorodifluoromethane (HCFC-22) and the global tropospheric OH concentration, J. Geophys. Res. 103, 13237–13248.CrossRefGoogle Scholar
  26. Montzka and Fraser, 2003: WMO 2002. Scientific assessment of ozone depletion 2002, World meteorological Organisation, Geneva, Switzerland.Google Scholar
  27. NASA, 1994: Report on concentrations, lifetimes, and trends of CFCs, halons, and related species, NASA Reference Publication 1339, Washington, D.C.Google Scholar
  28. O'Doherty, S., Simmonds, P. G., Cunnold, D. M., Wang, H. J., Sturrock, G. A., Fraser, P. J., Ryall, D., Derwent, R. G., Weiss, R. F., Salameh, P., Miller, B. R., and Prinn, R. G., 2001: In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998, J. Geophys. Res. 106, 20429–20444.Google Scholar
  29. Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, H. J., Hartley D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A., 2000: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res. 105, 17751–17792.CrossRefGoogle Scholar
  30. Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, H. J., Porter, L., and Miller, B. R., 2001: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science 292, 1882–1888.CrossRefGoogle Scholar
  31. Rhew, R. C., Miller, B. R., and Weiss, R. F., 2000: Natural methyl bromide and methyl chloride emissions from coastal salt marshes, Nature 403, 292–295.CrossRefGoogle Scholar
  32. Rhew, R. C., Miller, B. R., Vollmer, M. K., and Weiss, R. F., 2001: Schrubland fluxes of methyl bromide and methyl chloride, J. Geophys. Res. 106, 20875–20882.CrossRefGoogle Scholar
  33. Ryall, D. B., Maryon, R. H., Derwent, R. G., and Simmonds, P. G., 1998: Modelling long-range transport of CFCs to Mace Head, Ireland, Quart. J. Roy. Meteorol. Soc. 124, 417–446.CrossRefGoogle Scholar
  34. Sawa, Y., Matsueda, H., Tsutsumi, Y., Jensen, J. B., Inoue, Y., and Makino, Y., 1999: Tropospheric carbon monoxide and hydrogen measurements over Kalimantan in Indonesia and northern Australia during October 1997, Geophys. Res. Lett. 26, 1389–1392.CrossRefGoogle Scholar
  35. Serca, D., Guenther, A., Klinger, L., Helmig, D., Hereid, D., and Zimmerman, P., 1998: Methyl bromide deposition to soils, Atmos. Environ. 32, 1581–1586.Google Scholar
  36. Shorter, J. H., Kolb, C. E., Crill, P.M., Kerwin, R. A., Talbot, R. W., Hines, M. E., and Harriss, R. C., 1995: Rapid degradation of atmospheric bromide in soils, Nature 377, 717–719.CrossRefGoogle Scholar
  37. Simmonds, P. G., O'Doherty, S., Nickless, G., Sturrock, G. A., Swaby, R., Knight, P., Ricketts, J., Woffendin, G., and Smith, R., 1995: Automated gas chromatograph-mass spectrometer for routine atmospheric field measurements of the CFC replacement compounds, the hydrofluorocarbons and hydrochlorofluorocarbons, Anal. Chem. 34, 717–723.Google Scholar
  38. Simmonds, P. G., Seuring, S., Nickless, G., and Derwent, R. G., 1997: Segration and interpretation of ozone and carbon monoxide measurements by air mass origin at the TOR station, Mace Head, Ireland from 1987 to 1995, J. Atmos. Chem. 28, 45–59.CrossRefGoogle Scholar
  39. Simmonds, P. G., Derwent, R. G., O'Doherty, S., Ryall, D. B., Steele, L. P., Langenfelds, R. L., Salameh, P., Wang, H. J., Dimmer, C. H., and Hudson, L. E., 2000: Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the period 1994–1998, J. Geophys. Res. 105, 12105–12121.CrossRefGoogle Scholar
  40. Sturrock, G. A., Porter, L., and Fraser, P. J., 2001: In situ measurements of CFC replacement chemicals and other halocarbons at Cape Grim: The AGAGE GC-MS program, in N. W. Tindale, R. J. Francey, and N. Derek (eds), Baseline Atmospheric Program (Australia) 1997–1998, Bureau of Meteorology and CSIRO Atmospheric Research, Melbourne, Australia, pp. 43–49.Google Scholar
  41. Thoning, K. W., Tans, P. P., and Komhyr, W. D., 1989: Atmospheric carbon dioxide at Mauna Loa Observatory, 2, Analysis of NOAA/GMCC data, 1974–1985, J. Geophys. Res. 94, 8549–8565.Google Scholar
  42. Tokarczyk, R., Goodwin, K. D., and Saltzman E. S., 2003: Methyl chloride and methyl bromide degradation in the Southern Ocean, Geophys. Res. Lett. 30(15), 1808, doi:10.1029/2003GL017459.CrossRefGoogle Scholar
  43. UN ECE, 2002: Present state of emission data, EB.AIR/GE.1/2002/8, United Nations Economic Commission for Europe, Geneva, Switzerland.Google Scholar
  44. UNEP, 2002: Production and consumption of ozone depleting substances under the Montreal Protocol, Ozone Secretariat, Nairobi, Kenya, p. 71, April 2002.Google Scholar
  45. UNEP, 2003: Handbook for the International Treaties for the Protection of the Ozone Layer, 6th edn, Nairobi, Kenya.Google Scholar
  46. Varner, R. K., Crill, P. M., and Talbot, R. W., 1999: Wetlands: A potentially significant source of atmospheric methyl bromide and methyl chloride, Geophys. Res. Lett. 26, 2433–2435.Google Scholar
  47. Wingenter, O. W., Wang, C. J. L., Blake, D. R., and Rowland, F. S., 1998: Seasonal variation of tropospheric methyl bromide concentrations: Constraints on anthropogenic input, Geophys. Res. Lett, 25, 2797–2800.CrossRefGoogle Scholar
  48. Yokouchi, Y., Nojiri, Y., Barrie, L. A., Toom-Sauntry, D., Machida, T., Inuzuka, Y., Akimoto, H., Li, H. J., Fuginuma, Y., and Aoki, S., 2000a: A strong source of methyl chloride to the atmosphere from tropical coastal land, Nature 403, 29–298.CrossRefGoogle Scholar
  49. Yokouchi, Y., Machida, T., Barrie, L. A., Toom-Sauntry, D., Nojiri, Y., Fujinuma, Y., Inuzka, Y., Li, H. J., Akimoto, H., and Aoki, S., 2000b: Latitudinal distribution of atmospheric methyl bromide: Measurements and modelling, Geophys. Res. Lett, 27, 697–700.CrossRefGoogle Scholar
  50. Yokouchi, Y., Ikeda, M., Inuzuka, Y., and Yukawa, T., 2002a: Strong emissions of methyl chloride from tropical plants, Nature 416, 163–165.CrossRefGoogle Scholar
  51. Yokouchi, Y., Toom-Sauntry, D., Yazawa, K., Inagaki, T., and Tamaru, T., 2002b: Recent decline of methyl bromide in the troposphere, Atmos. Environ. 36, 4985–4989.CrossRefGoogle Scholar
  52. Yvon-Lewis, S. A., 2000: Methyl bromide in the atmosphere and ocean, IGACtivities, Newsletter, 9–12.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. G. Simmonds
    • 1
  • R. G. Derwent
    • 2
  • A. J. Manning
    • 2
  • P. J. Fraser
    • 3
  • P. B. Krummel
    • 3
  • S. O'Doherty
    • 1
  • R. G. Prinn
    • 6
  • D. M. Cunnold
    • 4
  • B. R. Miller
    • 5
  • H. J. Wang
    • 4
  • D. B. Ryall
    • 2
  • L. W. Porter
    • 6
  • R. F. Weiss
    • 5
  • P. K. Salameh
    • 5
  1. 1.School of ChemistryUniversity of BristolBristolU.K.
  2. 2.Climate ResearchMeteorological OfficeBracknellU.K.
  3. 3.Atmospheric ResearchCSIROMelbourneAustralia
  4. 4.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaU.S.A.
  5. 5.Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaU.S.A.
  6. 6.Cape Grim Baseline Air Pollution Monitoring StationBureau of MeteorologySmithtonAustralia

Personalised recommendations