Journal of Oceanography

, Volume 60, Issue 3, pp 519–530

Development of a Neural Network Algorithm for Retrieving Concentrations of Chlorophyll, Suspended Matter and Yellow Substance from Radiance Data of the Ocean Color and Temperature Scanner

  • Akihiko Tanaka
  • Motoaki Kishino
  • Roland Doerffer
  • Helmut Schiller
  • Tomohiko Oishi
  • Tadashi Kubota
Article

Abstract

An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns.

Neural network inverse modelling ocean color algorithm chlorophyll a suspended matter yellow substance ADEOS/OCTS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas, E. (1987): Two-stream irradiance model for deep sea. Appl. Opt., 26, 2095–2101.Google Scholar
  2. Babin, M. and R. Doerffer (1996): Specifications for case II coastal water reference model. Algorithm Theoretical Basis Document for MERIS (ATBD 2.12), ESA-ESTEC, 61–73.Google Scholar
  3. Bricaud, A., A. Morel and L. Prieur (1981): Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr., 26, 43–53.Google Scholar
  4. Bricaud, A., M. Babin, A. Morel and H. Claustre (1995): Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res., 100, 13321–13332.CrossRefGoogle Scholar
  5. Buckton, D., E. O'Mongain and S. Danaher (1999): The use of neural networks for the estimation of oceanic constituents based on the MERIS instrument. Int. J. Remote Sensing, 20, 1841–1851.CrossRefGoogle Scholar
  6. Carder, K. L., F. R. Chen, Z. P. Lee and S. K. Hawes (1999): Semianalytic Moderate-Resolution Spectrometer algorithms for chlorophyllaand absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res., 104, 5403–5421.CrossRefGoogle Scholar
  7. Carignan, R. and P. Vaithiyanathan (1999): Phosphorus availability in the Parana floodplain lakes (Argentina): Influence of pH and phosphate buffering by fluvial sediments. Limnol. Oceanogr., 44, 1540–1548.CrossRefGoogle Scholar
  8. Doerffer, R. (1979): Application of a two-flow model for remote sensing of substances in water. Boundary-Layer Meteology, 18, 221–232.CrossRefGoogle Scholar
  9. Doerffer, R. and V. Amann (1984): The development of the horizontal distribution of a North Sea phytoplankton bloom. Spec. Meeting on Causes, Dynamics and Effects of Exceptional Marine Blooms and Related Events, ICES, Copenhagen, 8 pp.Google Scholar
  10. Doerffer, R. and J. Fischer (1994): Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J. Geophys. Res., 99(C4), 7457–7466.CrossRefGoogle Scholar
  11. Gordon, H. R., D. K. Clark, J. L. Mueller and W. G. Hovis (1980): Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with surface measurements. Science, 210, 63–66.Google Scholar
  12. Gross, L., S. Thiria, R. Frouin and B. G. Mitchell (2000): Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration. J. Geophys. Res., 105, 3483–3495.CrossRefGoogle Scholar
  13. He, M. X., Z. S. Liu, K. P. Du, L. P. Li, R. Chen, K. L. Carder and Z. P. Lee (2000): Retrieval of chlorophyll from remotesensing reflectance in the China Seas. Appl. Opt., 39, 2467–2474.Google Scholar
  14. Højerslev, N. K. (1988): Natural occurrences and optical effects of gelbstoff. Rep. Dept. Phys. Oceanogr. Univ. Copenhagen, Copenhagen, Denmark, 30 pp.Google Scholar
  15. Jerlov, N. G. (1976): Marine Optics: Elsevier Oceanography Series, 5. Elsevier Scientific Publishing Company, Amsterdam, 231 pp.Google Scholar
  16. Joseph, J. (1950): Untersuchungen über Ober-und Unterlichtmessungen im Meere und über ihren Zusammenhang mit Durchsichtigkeitsmessungen. Deut. Hydorograph. Z., 3, 324–335.CrossRefGoogle Scholar
  17. Kawamura, H. and the OCTS team (1998): OCTS mission overview. J. Oceanogr., 54, 383–399.Google Scholar
  18. Keiner, L. E. and C. W. Brown (1999): Estimating oceanic chlorophyll concentrations with neural networks. Int. J. Remote Sensing, 20, 189–194.CrossRefGoogle Scholar
  19. Kim, G., H.-S. Yang and Y. Kodama (1998): Distributions of transition elements in the surface sediments of the Yellow Sea. Cont. Shelf Res., 18, 1531–1542.CrossRefGoogle Scholar
  20. Kirk, J. T. O. (1991): Volume scattering function, average cosines, and the underwater light field. Limnol. Oceanogr., 36, 455–467.Google Scholar
  21. Kishino, M., T. Ishimaru, K. Furuya, T. Oishi and K. Kawasaki (1995): Development of In-water Algorithm for OCTS and GLI. The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, 90 pp.Google Scholar
  22. Kishino, M., T. Ishimaru, K. Furuya, T. Oishi and K. Kawasaki(1998): In-water algorithm for ADEOS/OCTS. J. Oceanogr., 54, 431–436.Google Scholar
  23. Kowalczuk, P. (1999): Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea. J. Geophys. Res., 104(C12), 30047–30058.CrossRefGoogle Scholar
  24. Kronfeld, U. (1988): Die optishen Eignenschatten der ozea nischen Schwebstoffe und ihre Bedentung fur Fernerkundung von Phytoplankton. GKSS Forschungszentrum, D-2054 Geesthacht, Germany, 153 pp.Google Scholar
  25. Lee, Z. P., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock and C. O. Davis (1994): Model for the interpretation of hyperspectral remote-sensing reflectance. Appl. Opt., 33, 5721–5732.Google Scholar
  26. Mobley, C. D. (1994): Light and Water: Radiative Transfer in the Natural Waters. Academic Press, San Diego, CA, 592 pp.Google Scholar
  27. Morel, A. (1974): Optical properties of pure sea water. p. 1–24. In Optical Aspects of Oceanography, ed. by N. G. Jerlov and S. Nielssen, Academic Press, London.Google Scholar
  28. Morel, A. (1988): Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res., 93(C9), 10749–10768.CrossRefGoogle Scholar
  29. Morel, A. and A. Bricaud (1981): Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton. Deep-Sea Res., 28A, 1375–1393.CrossRefGoogle Scholar
  30. Morel, A. and A. Bricaud (1986): Light attenuation and scattering by phytoplanktonic cells: a theoretical modelling. Appl. Opt., 25, 571–580.CrossRefGoogle Scholar
  31. Morel, A. and S. Maritorena (2001): Bio-optical properties of oceanic waters: a reappraisal. J. Geophys. Res., 106, 7163-7180.Google Scholar
  32. O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru and C. McClain (1998): Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24937–24953.CrossRefGoogle Scholar
  33. Pope, R. M. and E. S. Fry (1997): Absorption spectrum (380-700) of pure water, II. Integrating cavity measurement. Appl. Opt., 36, 8710–8723.Google Scholar
  34. Prieur, L. and S. Sathyendranath (1981): An optical classification of coastal and oceanic waters based on the specific spectral absorption curve of phytoplankton pigments, dissolved organic matter, and other particle materials. Limnol. Oceanogr., 26, 671–689.CrossRefGoogle Scholar
  35. Saitoh, S., D. Inagake, K. Sasaoka, J. Ishizaka, Y. Nakane and T. Saino (1998): Satellite and ship observations of Kuroshio warm-core ring 93A off Sanriku, northwestern North Pacific, in Spring 1997. J. Oceanogr., 54, 495–508.Google Scholar
  36. Sathyendranath, S., L. Prieur and A. Morel (1989): A threecomponent model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int. J. Remote Sensing, 10, 1373–1394.Google Scholar
  37. Schiller, H. and R. Doerffer (1999): Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. Int. J. Remote Sensing, 20, 1735–1746.CrossRefGoogle Scholar
  38. SNNS (1995): Stuttgart Neural Network Simulator, User Manual, Version 4.1, University of Stuttgart, Institute for parallel and distributed high performance systems (anonymous ftp ftp.informatik.uni-stuttgart.de), 312 pp.Google Scholar
  39. Suzuki, K., M. Kishino, K. Sasaoka, S. Saitoh and T. Saino (1998):Chlorophyll-Specific absorption coefficient and pigments of phytoplankton off Sanriku, northwestern North Pacific. J. Oceanogr., 54, 517–526.Google Scholar
  40. Tassan, S. (1994): Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment and yellow substance in coastal waters. Appl. Opt., 33, 2369–2378.Google Scholar
  41. Yahei, R., G. Yahel and A. Genin (2002): Daily cycles of suspended sand at coral reefs: A biological control. Limnol. Oceanogr., 47, 1071–1083.CrossRefGoogle Scholar
  42. Yanagi, T., T. Hagita, T. Saino, T. Ishimaru and S. Noriki (1995): Transport mechanism of suspended matter above the shelf slope at the mouth of Tokyo Bay. J. Oceanogr., 51, 459–470.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Akihiko Tanaka
    • 1
  • Motoaki Kishino
    • 2
  • Roland Doerffer
    • 3
  • Helmut Schiller
    • 3
  • Tomohiko Oishi
    • 4
  • Tadashi Kubota
    • 4
  1. 1.Nagasaki Industrial Promotion FoundationBunkyo NagasakiJapan
  2. 2.5-2-10-115 NishiboriSaitamaJapan
  3. 3.Institute of HydrophysicsGKSS Research CentreGeesthachtGermany
  4. 4.School of Marine Science and TechnologyTokai UniversityShizuokaJapan

Personalised recommendations