Journal of Oceanography

, Volume 60, Issue 1, pp 139–147

Temporal Trends in Apparent Oxygen Utilization in the Upper Pycnocline of the North Pacific: 1980–2000

  • Steven Emerson
  • Yutaka W. Watanabe
  • Tsuneo Ono
  • Sabine Mecking
Article

Abstract

We present a compilation of apparent oxygen utilization (AOU) changes observed in the upper pycnocline of the North Pacific Ocean over the last several decades. The goal here is to place previously-published data in a common format, and assess the causes of the observed changes. The general trend along repeat cross sections of the eastern and western subtropical ocean and the subarctic ocean is an increase in AOU from the mid 1980s to the mid 1990s. AOU has also been increasing in a time-series study in the northwest subarctic Ocean off of Japan since the late 1960s. Observed AOU changes south of 35°N in the subtropical ocean are 10–20 μmol kg−1, with much greater changes, reaching 60–80 μmol kg−1 in isolated areas, in the subtropical/subarctic boundary and the subarctic ocean. Analysis of changes in both AOU and salinity on isopycnals suggests that there are significant salinity-normalized increases that must be due to alteration in the rate of ventilation or organic matter degradation. A common feature in the data is that the maximum increase in AOU is centered near the density horizon σθ= 26.6. Time series results from the Oyashio Current region near the winter outcrop area of this density horizon indicate that surface waters there have become fresher with time, which may mean this density surface has ceased to outcrop in the latter decades of the 20th century. Whether this is due to natural decadal-scale changes or anthropogenic influences can be decided by determining future trends in AOU on these density surfaces.

AOU pycnocline oxygen North Pacific subarctic subtropical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreev, A. and S. Watanabe (2002): Temporal changes in dissolved oxygen of the intermediate water in the subarctic North Pacific. Geophys. Res. Lett., 29, 14, 10.1029/ 2002GL015021 Google Scholar
  2. Bindoff, N. L. and T. J. McDougall (2000): Decadal changes along an Indian Ocean section at 32?S and their interpretation. J. Phys. Oceanogr., 30, 1207–1222.CrossRefGoogle Scholar
  3. Bopp, L., C. LeQuere, M. Heinmann, A. C. Manning and P. Monfray (2002): Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles, 16, doi:10.10292001GB001445.Google Scholar
  4. Chai, F., M. Jiang, R. T. Barber, R. C. Dugdale and Y. Chao (2003): Interdecadal variation of the transition zone chlorophyll front: A physical-biological model simulation between 1960 and 1990. J. Oceanogr., 59, 461–475.CrossRefGoogle Scholar
  5. Chavez, F. P., J. Ryan, S. E. Lluch-Cota and M. Niquen (2003): From Anchovies to Sardines and back: Multidecadal change in the Pacific Ocean. Science, 299, 217–221.CrossRefGoogle Scholar
  6. Emerson, S., S. Mecking and J. Abell (2001): The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield rations and recent changes. Global Biogeochem. Cycles, 15, 535–554.CrossRefGoogle Scholar
  7. Freeland, H., K. Denman, C. S. Wong, F. Whitney and R. Jacques (1997): Evidence of change in the winter mixed layer in the Northeast Pacific Ocean. Deep-Sea Res. I, 44, 2117–2129.CrossRefGoogle Scholar
  8. Garcia, H., A. Cruzado, L. Gordon and J. Escanez (1998): Decadal-scale chemical variability in the subtropical North Atlantic deduced from nutrient and oxygen data. J. Geophys. Res., 103, 2817–2830.CrossRefGoogle Scholar
  9. Haigh, S. P., K. L. Denman and W. W. Hsieh (2001): Simulation of the planktonic ecosystem response to pre-and post-1976 forcing in an isopycnal model of the North Pacific. Can. J. Fish. Aquat. Sci., 58, 703–722.CrossRefGoogle Scholar
  10. Joos, F., G.-K. Platner, T. F. Stocker, A. Kortzinger and D. R. Wallace (2003): Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget. EOS, 84, 21, 197.Google Scholar
  11. Karl, D. M. (1999): A sea of change: Biogeochemical variability in the north Pacific subtropical gyre. Ecosystems, 2, 181–214.CrossRefGoogle Scholar
  12. Keeling, R. F. and H. E. Garcia (2002): The change in oceanic O2 inventory associated with recent global warming. Proceed. Nat, Acad. Sci., 99, 7848–7853.CrossRefGoogle Scholar
  13. Keller, K., R. D. Slater, M. Bender and R. Key (2002): Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization. Deep-Sea Res. II, 49, 345–362.CrossRefGoogle Scholar
  14. Ladd, C. and L. Thompson (2002): Decadal Variability of North Pacific Central Water. J. Phys. Oceanogr., 32, 2870–2882.CrossRefGoogle Scholar
  15. Levitus, S. R., R. Burgett and T. P. Boyer (1994): World Ocean Atlas 1994, Vol 3, Salinity. U.S. Dept. of Commerce, Washington, D.C.Google Scholar
  16. Lima, I., L. Thompson, S. Emerson and P. Quay (2003): Thermocline ventilation and apparent oxygen utilization in the North Pacific: A numerical modeling investigation, Abstract. JGOFS Open Science Conference, May 5-8, 2003, Washington, D. C.Google Scholar
  17. Lysne, J. and C. Deser (2001): Wind-Driven thermocline variability in the Pacific: A model/data comparison. J. Climate(REF).Google Scholar
  18. Mantua, N. J., J. S. Hare, Y. Zhang, J. M. Wallace and R. C. Francis (1997): A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc., 78, 1069–1079.CrossRefGoogle Scholar
  19. Matear, R. J., A. C. Hirst and B. I. McNeil (2000): Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosyst., 1, doi:2000GC000086.Google Scholar
  20. McPhaden, M. J. and D. Zhang (2002): Slowdown of the meridianal overturning circulation in the upper Pacific Ocean. Nature, 415, 603–608.CrossRefGoogle Scholar
  21. Mecking, S., M. J. Warner and J. L. Bullister (2003): Age and AOU increases at the North Pacific subtropical/subpolar gyre boundary. Geophys. Res. Lett. (submitted).Google Scholar
  22. Ono, T., T. Midorikawa, Y. W. Watanabe and T. Saino (2001): Temporal increases of phosphate and apparent oxygen utilization in subsurface waters of western subarctic Pacific from 1968-1998. Geophys. Res. Lett., 28, 3285–3288.CrossRefGoogle Scholar
  23. Plattner, G.-K., F. Joos and T. F. Stocker (2002): Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles, 16, doi:10.10292001GB001746.Google Scholar
  24. Polovina, J. J., G. T. Mitchum, N. E. Grahm, M. P. Craig, E. E. Demartini and E. N. Flint (1994): Physical and biological consequences of climate event in the central North Pacific. Fish. Oceanogr., 3, 15–21.Google Scholar
  25. Polovina, J. J., G. T. Mitchum and G. T. Evans (1995): Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the central and north Pacific 1960-1988. Deep-Sea Res. I, 42, 1701–1716.CrossRefGoogle Scholar
  26. Shaffer, G., O. Leth, O. U. Bendtsen, G. Daneri, V. Dellarossa, S. Hormazabal and P.-I. Sehlstedt (2000): Warming and circulation change in the Eastern South Pacific Ocean. Geophys. Res., Lett., 27, 1247–1250.CrossRefGoogle Scholar
  27. Venrick, E. L., J. A. McGowan, D. R. Cayan and T. L. Hayward (1987): Climate and chlorophyll a: long-term trends in the central north Pacific Ocean. Science, 238, 70–72.Google Scholar
  28. Warner, M. J., J. L. Bullister, D. P. Wisegarver, R. H. Gammon and R. F. Weiss (1996): Basin-wide distributions of cholorfluorocarbons CTC-11 and CFC-12 in the North Pacific: 1985-1989. J. Geophys. Res., 101, 20525–20542.CrossRefGoogle Scholar
  29. Watanabe, Y. W., T. Ono, A. Shimanoto, T. Sugimoto, M. Wakita and S. Watanabe (2001): Probability of a reduction in the formation rate of the subsurface water in the North Pacific during 1980s and 1990s. Geophys. Res. Lett., 28, 3289–3292.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Steven Emerson
    • 1
  • Yutaka W. Watanabe
    • 2
  • Tsuneo Ono
    • 3
  • Sabine Mecking
    • 4
  1. 1.School of OceanographyUniversity of WashingtonSeattleU.S.A
  2. 2.Graduate School of Environmental and Earth ScienceHokkaido UniversitySapporoJapan
  3. 3.Hokkaido National Fisheries Research InstituteKushiroJapan
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleU.S.A

Personalised recommendations