Journal of Oceanography

, Volume 60, Issue 1, pp 53–62

Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data

  • Reiner Schlitzer
Article

Abstract

A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates.

Export production carbon cycle modeling nutrients oxygen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L. A. and J. Sarmiento (1994): Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 65–80. CrossRefGoogle Scholar
  2. Antoine, D., J.-M. Andre and A. Morel (1996): Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycless, 10(1), 57–69.CrossRefGoogle Scholar
  3. Arrigo, K. R., D. Worthen, A. Schnell and M. P. Lizotte (1998): Primary production in Southern Ocean waters. J. Geophys. Res., 103, 15587–15600.CrossRefGoogle Scholar
  4. Aufdenkampe, A. K., J. J. McCarthy, M. Rodier, C. Navarette, J. Dunne and J. W. Murray (2001): Estimation of new production in the tropical Pacific. Global Biogeochem. Cycles, 15(1), 101–112.CrossRefGoogle Scholar
  5. Bacon, M. P., J. K. Cochran, D. Hirschberg, T. R. Hammar and A. P. Fleer (1996): Export flux of carbon at the equator during the EqPac time-series cruises estimated from 234Th measurements. Deep-Sea Res. II, 43(4-6), 1133–1153.CrossRefGoogle Scholar
  6. Behrenfeld, M. J. and P. G. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20. CrossRefGoogle Scholar
  7. Berger, W. H. (1989): Appendix. Global maps of ocean productivity. p. 429–455. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, John Wiley & Sons, Inc., New York.Google Scholar
  8. Bishop, J. K. B. (1989): Regional extremes in particular matter composition and flux: effects on the chemistry of the ocean interior. p. 117–137. In Productivity of the Ocean: Present and Past, ed. by W. H. Berger, V. S. Smetacek and G. Wefer, John Wiley & Sons, Inc., Chichester.Google Scholar
  9. Boulahdid, M. and J. F. Minster (1989): Oxygen consumption and nutrient regeneration ratios along isopycnal horizons in the Pacific Ocean. Mar. Chem., 26, 133–153.CrossRefGoogle Scholar
  10. Buesseler, K. O. (1998): The decoupling of production and particulate export in the surface ocean. Global Biogeochem.Cycles, 12(2), 297–310.CrossRefGoogle Scholar
  11. Charette, M. A., S. B. Moran and J. K. B. Bishop (1999): 234Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean. Deep-Sea Res. II, 46(11-12), 2833–2861.CrossRefGoogle Scholar
  12. Chavez, F. P. and R. Barber (1987): An estimate of new production in the equatorial Pacific. Deep-Sea Res., 34(7), 1229–1243.CrossRefGoogle Scholar
  13. Codispoti, L.A. and J. P. Christensen (1985): Nitrification, denitrification and nitrous oxide cycling in the eastern tropical south Pacific Ocean. Mar. Chem., 16, 277–300.CrossRefGoogle Scholar
  14. Codispoti, L. A., G. E. Friederich, T. T. Packard, H. E. Glover, P. J. Kelly, R. W. Spinrad, R. T. Barber, J. W. Elkins, B. B. Ward, F. Lipschultz and N. Lostaunau (1986): High nitrite levels off nothern Peru: a signal of instability in the marine denitrification rate. Science, 233, 1200–1202.Google Scholar
  15. de las Heras, M. and R. Schlitzer (1999): On the importance of intermediate water flows for the global ocean overturning.J. Geophys. Res., 104, 15515–15536.CrossRefGoogle Scholar
  16. Dunne, J. P., J. W. Murray, M. Rodier and D. A. Hansell (2000): Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep-Sea Res. I, 4 (5), 901–936.CrossRefGoogle Scholar
  17. Emerson, S., P. Quay, D. Karl, C. Winn, L. Tupas and M. Landry (1997): Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389, 951–954.CrossRefGoogle Scholar
  18. Emerson, S., S. Mecking and J. Abell (2001): The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles, 15(3), 535–554.CrossRefGoogle Scholar
  19. Eppley, R. W. and B. J. Peterson (1979): Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677–680.CrossRefGoogle Scholar
  20. Fasham, M. J. R., H. W. Ducklow and S. M. McKelvie (1990): A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48, 591–639.Google Scholar
  21. Feely, R. A., C. L. Sabine, R. Schlitzer, J. L. Bullister, S. Mecking and D. Greeley (2004): Oxygen utilization and organic carbon remineralization in the upper water column of the Pacific Ocean. J. Oceanogr., 60, this issue, 45–52.CrossRefGoogle Scholar
  22. Goes, J. I., T. Saino, H. Oaku, J. Ishizaka, C. S. Wong and Y. Nojiri(2000): Basin scale estimates of sea surface nitrate and new production from remotely sensed sea surface temperature and chlorophyll. Geophys. Res. Lett., 27(9), 1263–1266.CrossRefGoogle Scholar
  23. Gruber, N. and J. L. Sarmiento (1997): Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11, 235–266.CrossRefGoogle Scholar
  24. Hansell, D. A. and C. A. Carlson (1998): Net community production of dissolved organic carbon. Global Biogeochem.Cycles, 12, 443–453.CrossRefGoogle Scholar
  25. Hestenes, M. R. (1975): Optimization Theory. John Wiley & Sons, Inc., New York.Google Scholar
  26. Honda, M. C., K. Imai, Y. Nojiri, F. Hoshi, T. Sugawara and M. Kusakabe (2002): The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments (1997-2000). Deep-Sea Res. II, 49(24-25), 5595–5625.CrossRefGoogle Scholar
  27. Honjo, S., S. J. Manganini and J. J. Cole (1982): Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res., 29, 609–625.CrossRefGoogle Scholar
  28. Honjo, S., J. Dymond, R. Collier and S. J. Manganini (1995): Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res. II, 42(2-3), 831–870.CrossRefGoogle Scholar
  29. Howell, E. A., S. C. Doney, R. A. Fine and D. B. Olson (1997): Geochemical estimates of denitrification in the Arabian Sea and the Bay of Bengal during WOCE. Geophys. Res. Lett., 24, 2549–2552.CrossRefGoogle Scholar
  30. Jenkins, W. J. (1987): 3H and 3He in the Beta triangle: Observations of gyre ventilation and oxygen utilization rates. J.Phys. Oceanogr., 17, 763–783.CrossRefGoogle Scholar
  31. Kawahata, H., A. Suzuki and H. Ohta (2000): Export fluxes in the Western Pacific Warm Pool. Deep-Sea Res. I, 47(11), 2061–2091.CrossRefGoogle Scholar
  32. Kirchman, D. L., Y. Suzuki, C. Garside and H. W. Ducklow (1991): High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature, 352, 612–614.CrossRefGoogle Scholar
  33. Laws, E. A., P. G. Falkowski, W. O. Smith, H. Ducklow and J. J. McCarthy (2000): Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14, 1231–1246.CrossRefGoogle Scholar
  34. Le Borgne, R., R. A. Feely and D. J. Mackey (2002): Carbon fluxes in the equatorial Pacific: a synthesis of the JGOFS programme. Deep-Sea Res. II, 49(13-14), 2425–2442.CrossRefGoogle Scholar
  35. Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res., 17, 1245–1271.Google Scholar
  36. Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model. preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645–677. CrossRefGoogle Scholar
  37. Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987): VERTEX: Carbon cycling in the northeast Pacific.Deep-Sea Res., 34, 267–285.CrossRefGoogle Scholar
  38. Matear, R. J., A. C. Hirst and B. I. McNeil (2000): Changes in dissolved oxygen in the Southern Ocean with climate change. Geochemistry Geophysics Geosystems, 1, 2000GC000086.Google Scholar
  39. McGillicuddy, D. J., A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels and A. H. Knap (1998): Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263–266.CrossRefGoogle Scholar
  40. McGillicuddy, D. J., L. A. Anderson, S. C. Doney and M. E. Maltrud (2003): Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1??resolution model of the North Atlantic. Global Biogeochem. Cycles, 17(2), 10.1029/2002GB001987.Google Scholar
  41. Moore, J. K., S. C. Doney, J. A. Kleypas, D. M. Glover and I. Y. Fung (2001): An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II, 49(1-3), 403–462.CrossRefGoogle Scholar
  42. Murray, J. W., J. Young, J. Newton, J. Dunne, T. Chapin, B. Paul and J. J. McCarthy (1996): Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep-Sea Res. II, 43(4-6), 1095–1132.CrossRefGoogle Scholar
  43. Murray, J. W., R. Leborgne and Y. Dandonneau (1997): JGOFS studies in the equatorial Pacific. Deep-Sea Res. II, 44(9-10), 1759–1763.CrossRefGoogle Scholar
  44. Ono, T., T. Midorikawa, Y. W. Watanabe, K. Tadokoro and T. Saino (2001): Temporal increases of phosphate and apparent oxygen utilization in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett., 28(17), 3285–3288.CrossRefGoogle Scholar
  45. Oschlies, A. (2002): Can eddies make ocean deserts bloom? Global Biogeochem. Cycles, 10.1029/2001GB001830.Google Scholar
  46. Reid, J. L. (1986): On the total geostrophic circulation of the South Pacific Ocean: flow patterns, tracers, and transports. Prog. Oceanogr., 16, 1–61. CrossRefGoogle Scholar
  47. Reid, J. L. (1997): On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog.Oceanogr, 39, 263–352.CrossRefGoogle Scholar
  48. Riley, G. A. (1951): Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Coll., 13(1), 1–124.Google Scholar
  49. Rintoul, S. R. (1991): South Atlantic interbasin exchange. J.Geophys. Res., 96, 2675–2692.Google Scholar
  50. Rintoul, S. and C. Wunsch (1991): Mass, heat, oxygen and nutrient fluxes and budgets in the north Atlantic Ocean. Deep-Sea Res., 38 (Suppl.), S355–S377.Google Scholar
  51. Rodier, M. and R. L. Borgne (1997): Export flux of particles at the equator in the western and central Pacific ocean. Deep-Sea Res. II, 44, 2085–2113.CrossRefGoogle Scholar
  52. Schlitzer, R. (1993): Determining the mean, large-scale circulation of the Atlantic with the adjoint method. J. Phys.Oceanogr., 23, 1935–1952.CrossRefGoogle Scholar
  53. Schlitzer, R. (1995): An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes and mixing coefficients. Alfred-Wegener-Institut, Bremerhaven.Google Scholar
  54. Schlitzer, R. (1996): Mass and heat transports in the South Atlantic derived from historical hydrographic data. p. 305–323. In The South Atlantic: Present and Past Circulation, ed. by G. Siedler, G. Wefer, W. H. Berger and D. Webb, Springer, Berlin.Google Scholar
  55. Schlitzer, R. (2000): Applying the adjoint method for global biogeochemical modeling. p. 107–124. In Inverse Methods in Global Biogeochemical Cycles, ed. by P. Kasibhatla, M. Heimann, D. Hartley, N. Mahowald, R. Prinn and P. Rayner, AGU Geophys. Monograph Series, Vol. 114.Google Scholar
  56. Schlitzer, R. (2002): Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates. Deep-Sea Res. II, 49, 1623–1644.CrossRefGoogle Scholar
  57. Schlitzer, R., R. Usbeck and G. Fischer (2003): Inverse modeling of particulate organic carbon fluxes in the South Atlantic. In The South Atlantic in the Late Quaternary-Reconstruction of Material Budget and Current Systems, ed. by G. Wefer, S. Mulitza and V. Rathmeyer, Springer, Berlin (in print).Google Scholar
  58. Schneider, B., R. Schlitzer, G. Fischer and E.-M. Nöthig (2003): Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Global Biogeochem. Cycles, 17(2), 1029/2002GB001871.Google Scholar
  59. Suess, E. (1980): Particulate organic carbon flux in the oceanssurface productivity and oxygen utilization. Nature, 288, 260–263.CrossRefGoogle Scholar
  60. Takahashi, T., W. S. Broecker and S. Langer (1985): Redfield ratio based on chemical data from isopycnal surfaces. J.Geophys. Res., 90, 6907–6924.Google Scholar
  61. Thacker, W. C. and R. B. Long (1988): Fitting dynamics to data. J. Geophys. Res., 93, 1227–1240. Google Scholar
  62. Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. p. 99–110. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. by E. T. Sundquist and W. S. Broecker, AGU Geophysical Monograph 32, Washington, D.C.Google Scholar
  63. Wefer, G., E. Suess, W. Balzer, G. Liebezeit, P. J. Müller, C. A. Ungerer and W. Zenk (1982): Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage. Nature, 299, 145–147.CrossRefGoogle Scholar
  64. Whitworth, T., III and W. D. Nowlin, Jr. (1987): Water masses and currents of the southern ocean at the Greenwich meridian. J. Geophys. Res., 92, 6462–6476. CrossRefGoogle Scholar
  65. Wong, C. S., N. A. D. Waser, Y. Nojiri, F. A. Whitney, J. S. Page and J. Zeng (2002): Seasonal cycles of nutrients and dissolved inorganic carbon at high and mid latitudes in the North Pacific Ocean during the Skaugran cruises: determination of new production and nutrient uptake ratios. Deep-Sea Res. II, 49(24-25), 5317–5338.CrossRefGoogle Scholar
  66. Yamanaka, Y. and E. Tajika (1996): The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 10, 361–382.CrossRefGoogle Scholar
  67. Yamanaka, Y. and E. Tajika (1997): Role of dissolved organic matter in the marine biogeochemical cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem. Cycles, 11, 599–612.CrossRefGoogle Scholar
  68. Zhang, J. and P. D. Quay (1997): The total organic carbon export rate based on 13C and 12C of DIC budgets in the equatorial Pacific region. Deep-Sea Res. II, 44(9-10), 2163–2190.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Reiner Schlitzer
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchColumbusstrasse, BremerhavenGermany

Personalised recommendations