Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 4, pp 407–413 | Cite as

The Nonimmunosuppressive Cyclosporin Analogs NIM811 and UNIL025 Display Nanomolar Potencies on Permeability Transition in Brain-Derived Mitochondria

  • Magnus J. Hansson
  • Gustav Mattiasson
  • Roland Månsson
  • Jenny Karlsson
  • Marcus F. Keep
  • Peter Waldmeier
  • Urs T. Ruegg
  • Jean-Maurice Dumont
  • Kamel Besseghir
  • Eskil Elmér
Article

Abstract

Cyclosporin A (CsA) is highly neuroprotective in several animal models of acute neurological damage and neurodegenerative disease with inhibition of the mitochondrial permeability transition (mPT) having emerged as a possible mechanism for the observed neuroprotection. In the present study, we have evaluated two new nonimmunosuppressive cyclosporin analogs NIM811 (Novartis) and UNIL025 (Debiopharm) for their ability to inhibit mPT in rat brain-derived mitochondria. Both NIM811 and UNIL025 were found to be powerful inhibitors of calcium-induced mitochondrial swelling under energized and deenergized conditions, and the maximal effects were identical to those of native CsA. The potencies of mPT inhibition by NIM811 and UNIL025 were stronger, with almost one order of magnitude higher potency for UNIL025 compared to CsA, correlating to their respective inhibitory action of cyclophilin activity. These compounds will be instrumental in the evaluation of mPT as a central target for neuroprotection in vivo.

Cell death apoptosis neuron ischemia neurodegeneration traumatic brain injury amyotrophic lateral sclerosis cyclophilin mitochondrial permeability transition flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alves, O., Tolias, C. M., Lewis, C., Hayes, R., Choi, S., Gilman, C., Enriquez, P., Povlishock, J., and Bullock, M. R. (2003). J. Neuro-trauma 20, 1125. (NNS Symposium abstract).Google Scholar
  2. Bambrick, L., Kristian, T., and Fiskum, G. (2004). Neurochem. Res. 29, 601–608PubMedGoogle Scholar
  3. Begley, D. J., Squires, L. K., Zlokovic, B. V., Mitrovic, D. M., Hughes, C. C., Revest, P. A., and Greenwood, J. (1990). J. Neurochem. 55, 1222–1230.PubMedGoogle Scholar
  4. Billich, A., Hammerschmid, F., Peichl, P., Wenger, R., Zenke, G., Quesniaux, V., and Rosenwirth, B. (1995). J. Virol. 69, 2451–2461.PubMedGoogle Scholar
  5. Borel, J. F., Baumann, G., Chapman, I., Donatsch, P., Fahr, A., Mueller, E. A., and Vigouret, J. M. (1996). Adv. Pharmacol. 35, 115–246.PubMedGoogle Scholar
  6. Brophy, G. M., Bullock, M. R., Tolias, C. M., Alves, O., Enriquez, P., and Gilman, C. (2003). J. Neurotrauma 20, 1125. (NNS Symposium abstract).Google Scholar
  7. Crompton, M. (1999). Biochem. J. 341, 233–249.PubMedGoogle Scholar
  8. Friberg, H., and Wieloch, T. (2002). Biochimie 84, 241–250.PubMedGoogle Scholar
  9. Friberg, H., Connern, C., Halestrap, A. P., and Wieloch, T. (1999). J. Neurochem. 72, 2488–2497.PubMedGoogle Scholar
  10. Halestrap, A. P., McStay, G. P., and Clarke, S. J. (2002). Biochimie 84, 153–166.PubMedGoogle Scholar
  11. Hansson, M. J., Persson, T., Friberg, H., Keep, M. F., Rees, A., Wieloch, T., and Elmér, E. (2003). Brain Res. 960, 99–111.PubMedGoogle Scholar
  12. Hansson, M. J., Månsson, R., Mattiasson, G., Ohlsson, J., Karlsson, J., Keep, M. F., and Elmér E. (2004). J. Neurochem. 89, 715–729.PubMedGoogle Scholar
  13. Keep, M., Elmér, E., Fong, K. S., and Csiszar, K. (2001). Brain Res. 894, 327–331.PubMedGoogle Scholar
  14. Keep, M. F., Uchino, H., and Elmér, E. (2003). In Immunosuppressant Analogs in Neuroprotection (Borlongan, C. V., Isacson, O., and Sanberg, P. R., eds.), Humana Press, Totowa, pp. 3–32.Google Scholar
  15. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B. (1998). Biochim. Biophys. Acta 1366, 177–196.PubMedGoogle Scholar
  16. Mattiasson, G., Friberg, H., Hansson, M., Elmér, E., and Wieloch, T. (2003). J. Neurochem. 87, 532–544.PubMedGoogle Scholar
  17. Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., and Bernardi, P. (1996). J. Biol. Chem. 271, 2185–2192.PubMedGoogle Scholar
  18. Okonkwo, D. O., Melon, D. E., Pellicane, A. J., Mutlu, L. K., Rubin, D. G., Stone, J. R., and Helm, G. A. (2003). Neuroreport 14, 463–466.PubMedGoogle Scholar
  19. Petronilli, V., Nicolli, A., Costantini, P., Colonna, R., and Bernardi, P. (1994). Biochim. Biophys. Acta 1187, 255–259.PubMedGoogle Scholar
  20. Rosenwirth, B., Billich, A., Datema, R., Donatsch, P., Hammerschmid, F., Harrison, R., Hiestand, P., Jaksche, H., Mayer, P., Peichl, P., et al. (1994). Antimicrob. Agents Chemother. 38, 1763–1772.PubMedGoogle Scholar
  21. Sims, N. (1990). J. Neurochem. 55, 698–707.PubMedGoogle Scholar
  22. Sullivan, P. G., Rabchevsky, A. G., Hicks, R. R., Gibson, T. R., Fletcher-Turner, A., and Scheff, S. W. (2000). Neuroscience 101, 289–295.PubMedGoogle Scholar
  23. Tsuji, A., Tamai, I., Sakata, A., Tenda, Y., and Terasaki, T. (1993). Biochem. Pharmacol. 46, 1096–1099.PubMedGoogle Scholar
  24. Uchino, H., Elmér, E., Uchino, K., Lindvall, O., and Siesjö, B. K. (1995). Acta Physiol. Scand. 155, 469–471.PubMedGoogle Scholar
  25. Waldmeier, P. C., Feldtrauer, J. J., Qian, T., and Lemasters, J. J. (2002). Mol. Pharmacol. 62,22–29.PubMedGoogle Scholar
  26. Waldmeier, P. C., Zimmermann, K., Qian, T., Tintelnot-Blomley, M., and Lemasters, J. J. (2003). Curr. Med. Chem. 10, 1485–1506.PubMedGoogle Scholar
  27. Yoshimoto, T., and Siesjö, B. K. (1999). Brain Res. 839, 283–291.PubMedGoogle Scholar
  28. Zamzami, N., and Kroemer, G. (2001). Nat. Rev. Mol. Cell. Biol. 2, 67–71.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Magnus J. Hansson
    • 1
    • 2
  • Gustav Mattiasson
    • 1
  • Roland Månsson
    • 1
    • 3
  • Jenny Karlsson
    • 4
  • Marcus F. Keep
    • 5
  • Peter Waldmeier
    • 6
  • Urs T. Ruegg
    • 7
  • Jean-Maurice Dumont
    • 8
  • Kamel Besseghir
    • 8
  • Eskil Elmér
    • 1
  1. 1.Laboratory for Experimental Brain Research, Wallenberg Neuroscience CenterLund UniversityLundSweden
  2. 2.Department of Internal MedicineRyhov HospitalJönköpingSweden
  3. 3.Department of NeurologyMalmö University HospitalSweden
  4. 4.Community Environmental Health Program, Department of Internal MedicineUniversity ofNew Mexico, AlbuquerqueNew Mexico
  5. 5.Division of NeurosurgeryUniversity of New MexicoAlbuquerqueNew Mexico
  6. 6.Department of NeuroscienceNovartis Institute for Biomedical ResearchBaselSwitzerland
  7. 7.Pharmacology Group, School of PharmacyUniversity of LausanneSwitzerland
  8. 8.Debiopharm S. A.LausanneSwitzerland

Personalised recommendations