Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 4, pp 395–399 | Cite as

Mitochondrial Degeneration in Amyotrophic Lateral Sclerosis

  • Zuoshang Xu
  • Cheowha Jung
  • Cynthia Higgins
  • John Levine
  • Jiming Kong

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes motor neuron degeneration, progressive skeletal muscle atrophy, paralysis, and death. To understand the mechanism of motor neuron degeneration, we have analyzed the clinical disease progression and the pathological changes in a transgenic mouse model for ALS. We found massive mitochondrial vacuolation at the onset of disease. By detailed morphological observations, we have determined that this mitochondrial vacuolation is developed from expansion of mitochondrial intermembrane space and extension of the outer membrane and involves peroxisomes. Lysosomes do not actively participate at all stages of this vacuolation. We conclude that this mitochondrial vacuolation is neither classical mitochondrial permeability transition nor autophagic vacuolation. Thus, this appears to be a new form of mitochondrial vacuolation and we term this as mitochondrial vacuolation by intermembrane space expansion or MVISE.

Mitochondria mitochondrion amyotrophic lateral sclerosis motor neuron motoneuron spinal cord neurodegenerative disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aggarwal, A., and Nicholson, G. (2002). J. Neurol. Neurosurg. Psychiatry. 73, 199–201.PubMedGoogle Scholar
  2. Andreassen, O. A., Ferrante, R. J., Klivenyi, P., Klein, A. M., Dedeoglu, A., Albers, D. S., Kowall, N. W., and Beal, M. F. (2001). Exp. Neurol. 168, 356–363.PubMedGoogle Scholar
  3. Andreassen, O. A., Ferrante, R. J., Klivenyi, P., Klein, A. M., Shinobu, L. A., Epstein, C. J., and Beal, M. F. (2000). Ann. Neurol. 47, 447–455.PubMedGoogle Scholar
  4. Batulan, Z., Shinder, G. A., Minotti, S., He, B. P., Doroudchi, M. M., Nalbantoglu, J., Strong, M. J., and Durham, H. D. (2003). J. Neurosci. 23, 5789–5798.PubMedGoogle Scholar
  5. Beal, M. F. (1992). Ann. Neurol. 31, 119–130.PubMedGoogle Scholar
  6. Bendotti, C., Calvaresi, N., Chiveri, L., Prelle, A., Moggio, M., Braga, M., Silani, V., and De Biasi, S. (2001). J. Neurol. Sci. 191,25–33.PubMedGoogle Scholar
  7. Bittigau, P., and Ikonomidou, C. (1997). J. Child Neurol. 12, 471–485.PubMedGoogle Scholar
  8. Bruening, W., Roy, J., Giasson, B., Figlewicz, D. A., Mushynski, W. E., and Durham, H. D. (1999). J. Neurochem. 72, 693–699.PubMedGoogle Scholar
  9. Bruijn, L. I., Becher, M. W., Lee, M. K., Anderson, K. L., Jenkins, N.A., Copeland, N. G., Sisodia, S. S., Rothstein, J. D., Borchelt, D. R., Price, D. L., and Cleveland, D. W. (1997). Neuron. 18, 327–338.PubMedGoogle Scholar
  10. Bruijn, L. I., Houseweart, M. K., Kato, S., Anderson, K. L., Anderson, S. D., Ohama, E., Reaume, A. G., Scott, R. W., and Cleveland, D. W. (1998). Science 281, 1851–1854.PubMedGoogle Scholar
  11. Carpenter, S. (1968). Neurol. 18, 841–851.Google Scholar
  12. Carri, M. T., Ferri, A., Battistoni, A., Famhy, L., Cabbianelli, R., Poccia, F., and Rotilio, G. (1997). FEBS Lett. 414, 365–368.PubMedGoogle Scholar
  13. Cleveland, D. W., and Rothstein, J. D. (2001). Nat. Rev. Neurosci. 2, 806–819.PubMedGoogle Scholar
  14. Cox, P. A., Banack, S. A., and Murch, S. J. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 13380–13383.PubMedGoogle Scholar
  15. Dal Canto, M. C., and Gurney, M. E. (1995). Brain Res. 676,25–40.PubMedGoogle Scholar
  16. De la Rua-Domenech, R., Mohammed, H. O., Cummings, J. F., Divers, T. J., De Lahunta, A., and Summers, B. A. (1997). Vet. J. 154, 203–213.PubMedGoogle Scholar
  17. Green, D. R., and Evan, G. I. (2002). Cancer Cell 1,19–30.PubMedGoogle Scholar
  18. Guegan, C., and Przedborski, S. (2003). J. Clin. Invest. 111, 153–161.PubMedGoogle Scholar
  19. Guegan, C., Vila, M., Rosoklija, G., Hays, A. P., and Przedborski, S. (2001). J. Neurosci. 21, 6569–6576.PubMedGoogle Scholar
  20. Gurney, M. E. (1994). N. Engl. J. Med. 331, 1721–1722.PubMedGoogle Scholar
  21. Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H.-X., Chen, W., Zhai, P., Sufit, R. L., and Siddique, T. (1994). Science 264, 1772–1775.PubMedGoogle Scholar
  22. Higgins, C. M., Jung, C., Ding, H., and Xu, Z. (2002). J. Neurosci. 22, RC215.PubMedGoogle Scholar
  23. Higgins, C. M., Jung, C., and Xu, Z. (2003). BMC Neurosci. 4, 16.PubMedGoogle Scholar
  24. Hirano, A. (1991). Adv. Neurol. 56,91–101.PubMedGoogle Scholar
  25. Hirano, A., Donnenfeld, H., Sasaki, S., and Nakano, I. (1984a). J. Neuropath. Exp. Neurol. 43, 461–470.PubMedGoogle Scholar
  26. Hirano, A., Nakano, I., Kurland, L. T., Mulder, D. W., Holley, P. W., and Saccomanno, G. (1984b). J. Neuropath. Exp. Neurol. 43, 471–480.PubMedGoogle Scholar
  27. Ikonomidou, C., Qin Qin, Y., Labruyere, J., and Olney, J. W. (1996). J. Neuropath. Exp. Neurol. 55, 211–224.PubMedGoogle Scholar
  28. Jaarsma, D., Rognoni, F., van Duijn, W., Verspaget, H. W., Haasdijk, E. D., and Holstege, J. C. (2001). Acta Neuropathol. (Berl.) 102, 293–305.Google Scholar
  29. Julien, J. P. (2001). Cell 104, 581–591.PubMedGoogle Scholar
  30. Jung, C., Higgins, C. M., and Xu, Z. (2002). J. Neurochem. 83, 535–545.PubMedGoogle Scholar
  31. Kaal, E. C., Vlug, A. S., Versleijen, M. W., Kuilman, M., Joosten, E. A., and Bar, P. R. (2000). J. Neurochem. 74, 1158–1165.PubMedGoogle Scholar
  32. Kasarskis, E. J., and Winslow, M. (1989). Neurology 39, 1243–1245.PubMedGoogle Scholar
  33. Kong, J., and Xu, Z. (1998). J. Neurosci. 18, 3241–3250.PubMedGoogle Scholar
  34. Kruman, P. W. A., II, Springer, J. E., and Mattson, M. P. (1999). Exp. Neurol. 160,28–39.PubMedGoogle Scholar
  35. Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T., and Lansbury, P. T., Jr. (2002). J. Mol. Biol. 322, 1089–1102.PubMedGoogle Scholar
  36. Levine, J. B., Kong, J., Nadler, M., Xu, Z. (1999). Glia 28, 215–224.PubMedGoogle Scholar
  37. Liu, R., Li, B., Flanagan, S. W., Oberley, L. W., Gozal, D., and Qiu, M. (2002). J. Neurochem. 80, 488–500.PubMedGoogle Scholar
  38. Masui, Y., Mozai, T., and Kakehi, K. (1985). J. Neurol. 232,15–19.PubMedGoogle Scholar
  39. Mattiazzi, M., D'Aurelio, M., Gajewski, C. D., Martushova, K., Kiaei, M., Beal, M. F., and Manfredi, G. (2002). J. Biol. Chem. 277, 29626–29633.PubMedGoogle Scholar
  40. Mattson, M. P., and Duan, W. (1999). J. Neurosci. Res. 58, 152–166.PubMedGoogle Scholar
  41. Menzies, F. M., Cookson, M. R., Taylor, R. W., Turnbull, D. M., Chrzanowska-Lightowlers, Z. M., Dong, L., Figlewicz, D. A., and Shaw, P. J. (2002a). Brain 125, 1522–1533.PubMedGoogle Scholar
  42. Menzies, F. M., Ince, P. G., and Shaw, P. J. (2002b). Neurochem. Int. 40, 543–551.PubMedGoogle Scholar
  43. Neupert, W., and Brunner, M. (2002). Nat. Rev. Mol. Cell. Biol. 3, 555–565.PubMedGoogle Scholar
  44. Okado-Matsumoto, A., and Fridovich, I. (2001). J. Biol. Chem. 276, 38388–38393.PubMedGoogle Scholar
  45. Okado-Matsumoto, A., and Fridovich, I. (2002). PNAS 99, 9010–9014.PubMedGoogle Scholar
  46. Pasinelli, P., Houseweart, M. K., Brown, R. H., Jr., and Cleveland, D. W. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 13901–13906.PubMedGoogle Scholar
  47. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H., and Gordon, J. W. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 689–693.PubMedGoogle Scholar
  48. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto J., O'Regan J. P., and Deng H. X., et al. (1993). Nature 362,59–62.PubMedGoogle Scholar
  49. Rowland, L. P., and Shneider, N. A. (2001). N. Engl. J. Med. 344, 1688–1700.PubMedGoogle Scholar
  50. Sasaki, S., and Iwata, M. (1999). Neurosci. Lett. 268,29–32.PubMedGoogle Scholar
  51. Sasaki S., Maruyama S., Yamane K., Sakuma H., and Takeishi, M. (1990). J. Neurol. Sci. 97, 233–240.PubMedGoogle Scholar
  52. Shinder, G. A., Lacourse, M.-C., Minotti, S., and Durham, H. D. (2001). J. Biol. Chem. 276, 12791–12796.PubMedGoogle Scholar
  53. Sturtz, L. A., Diekert, K., Jensen, L. T., Lill, R., and Culotta, V. C. (2001). J. Biol. Chem. 276, 38084–38089.PubMedGoogle Scholar
  54. Takeuchi, H., Kobayashi, Y., Ishigaki, S., Doyu, M., and Sobue, G. (2002). J. Biol. Chem. 277, 50966–50972.PubMedGoogle Scholar
  55. Volles, M. J., Lee, S. J., Rochet, J. C., Shtilerman, M. D., Ding, T. T., Kessler, J. C., and Lansbury, P. T., Jr. (2001). Biochemistry 40, 7812–7819.PubMedGoogle Scholar
  56. Wang, J., Xu G., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N. G., Jenkins, N. A., and Borchelt, D. R. (2002). Neurobiol. Dis. 10, 128–138.PubMedGoogle Scholar
  57. Wiedemann F. R., Manfredi G., Mawrin C., Beal M. F., and Schon, E. A. (2002). J. Neurochem. 80, 616–625.PubMedGoogle Scholar
  58. Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., Sisodia, S. S., Cleveland, D. W., and Price, D. L. (1995). Neuron 14, 1105–1116.PubMedGoogle Scholar
  59. Young, J. C., Hoogenraad, N. J., and Hartl, F. U. (2003). Cell 112,41–50.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Zuoshang Xu
    • 1
  • Cheowha Jung
    • 2
  • Cynthia Higgins
    • 3
  • John Levine
    • 4
  • Jiming Kong
    • 5
  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts 01605
  2. 2.Department of Biological SciencesUniversity of MassachusettsLowellMassachusetts
  3. 3.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
  4. 4.Department of Child PsychiatryCambridge Hospital, Harvard Medical SchoolCambridgeMassachusetts
  5. 5.Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations