Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 4, pp 335–340 | Cite as

Mitochondrial Enzymes and Endoplasmic Reticulum Calcium Stores as Targets of Oxidative Stress in Neurodegenerative Diseases

  • Gary E. Gibson
  • Hsueh-Meei Huang
Article

Abstract

Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H2O2, a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, α-keto-β-methyl-n-valeric acid (KMV) diminishes the H2O2 effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H2O2-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.

Reactive oxygen species KGDHC bombesin-releasable calcium stores Alzheimer's disease oxidants antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., and Markesbery, W. R. (2001). Neuroscience 103, 373–383.PubMedGoogle Scholar
  2. Butterworth, R. F., Kril, J. J., and Harper, C. G. (1993). Alcohol Clin. Exp. Res. 17, 1084–1088.PubMedGoogle Scholar
  3. Calingasan, N. Y., Uchida, K., and Gibson, G. E. (1999). J. Neurochem. 72, 751–756.PubMedGoogle Scholar
  4. Chinopoulos, C., Tretter, L., and Adam-Vizi, V. (1999). J. Neurochem. 73, 220–228.PubMedGoogle Scholar
  5. Gibson, G. E., and Blass, J. P. (1976). J. Neurochem. 26, 1073–1078.PubMedGoogle Scholar
  6. Gibson, G. E., Haroutunian, V., Zhang, H., Park, L. C., Shi, Q., Lesser, M., Mohs, R. C., Sheu, R. K., and Blass, J. P. (2000). Ann. Neurol. 48, 297–303.PubMedGoogle Scholar
  7. Gibson, G. E., Kingsbury, A. E., Xu, H., Lindsay, J. G., Daniel, S., Foster, O. J., Lees, A. J., and Blass, J. P. (2003). Neurochem. Int. 43, 129–135.PubMedGoogle Scholar
  8. Gibson, G. E., Park, L. C., Sheu, K. F., Blass, J. P., and Calingasan, N. Y. (2000). Neurochem. Int. 36,97–112.PubMedGoogle Scholar
  9. Gibson, G. E., Vestling, M., Zhang, H., Szolosi, S., Alkon, D., Lannfelt, L., Gandy, S., and Cowburn, R. F. (1997). Neurobiol. Aging 18, 573–580.PubMedGoogle Scholar
  10. Gibson, G. E., Zhang, H., Sheu, K. F., Bogdanovich, N., Lindsay, J. G., Lannfelt, L., Vestling, M., and Cowburn, R. F. (1998). Ann. Neurol. 44, 676–681.PubMedGoogle Scholar
  11. Gibson, G. E., Zhang, H., Sheu, K. F., and Park, L. C. (2000). Biochim. Biophys. Acta 1502, 319–329.PubMedGoogle Scholar
  12. Gibson, G. E., Zhang, H., Toral-Barza, L., Szolosi, S., and Tofel-Grehl, B. (1996). Biochim. Biophys. Acta 1316,71–77.PubMedGoogle Scholar
  13. Gibson, G. E., Zhang, H., Xu, H., Park, L. C., and Jeitner, T. M. (2002). Biochim. Biophys. Acta 1586, 177–189.PubMedGoogle Scholar
  14. Guo, Q., Furukawa, K., Sopher, B. L., Pham, D. G., Xie, J., Robinson, N., Martin, G. M., and Mattson, M. P. (1996). Neuroreport 8, 379–383.PubMedGoogle Scholar
  15. Hinerfeld, D., Traini, M. D., Weinberger, R. P., Cochran, B., Doctrow, S. R., Harry, J., and Melov, S. (2004). J. Neurochem. 88, 657–667.PubMedGoogle Scholar
  16. Huang, H. M., Ou, H. C., Xu, H., Chen, H. L., Fowler, C., and Gibson, G. E. (2003). J. Neurosci. Res. 74, 309–317.PubMedGoogle Scholar
  17. Humphries, K. M., Yoo, Y., and Szweda, L. I. (1998). Biochemistry 37, 552–557.PubMedGoogle Scholar
  18. Ito, E., Oka, K., Etcheberrigaray, R., Nelson, T. J., McPhie, D. L., Tofel-Grehl, B., Gibson, G. E., and Alkon, D. L. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 534–538.PubMedGoogle Scholar
  19. Klivenyi, P., Starkov, A. A., Calingasan, N. Y., Gardian, G., Browne, S. E., Yang, L., Bubber, P., Gibson, G. E., Patel, M. S., and Beal, M. F. (2004). J. Neurochem. 88, 1352–1360.PubMedGoogle Scholar
  20. Kumar, M. J., Nicholls, D. G., and Andersen, J. K. (2003). J. Biol. Chem. 278, 46432–46439PubMedGoogle Scholar
  21. Leissring, M. A., Akbari, Y., Fanger, C. M., Cahalan, M. D., Mattson, M. P., and LaFerla, F. M. (2000). J. Cell. Biol. 149, 793–798.PubMedGoogle Scholar
  22. Lyras, L., Cairns, N. J., Jenner, A., Jenner, P., and Halliwell, B. (1997). J. Neurochem. 68, 2061–2069.PubMedGoogle Scholar
  23. Markesbery, W. R., and Carney, J. M. (1999). Brain Pathol. 9, 133–146.PubMedGoogle Scholar
  24. Mastrogiacomo, F., Bergeron, C., and Kish, S. J. (1993). J. Neurochem. 61, 2007–2014.PubMedGoogle Scholar
  25. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C. S., Petersen, R. B., and Smith, M. A. (2001). J. Neu-ropathol. Exp. Neurol. 60, 759–767.Google Scholar
  26. Park, L. C., Albers, D. S., Xu, H., Lindsay, J. G., Beal, M. F., and Gibson, G. E. (2001). J. Neurosci. Res. 66, 1028–1034.PubMedGoogle Scholar
  27. Park, L. C., Zhang, H., Sheu, K. F., Calingasan, N. Y., Kristal, B. S., Lindsay, J. G., and Gibson, G. E. (1999). J. Neurochem. 72, 1948–1958.PubMedGoogle Scholar
  28. Peterson, C., Gibson, G. E., and Blass, J. P. (1985). N. Engl. J. Med. 312, 1063–1065.PubMedGoogle Scholar
  29. Pratico, D. (2001). Lipids 36(Suppl), S45–S47.PubMedGoogle Scholar
  30. Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., Chevion, M., Perry, G., and Smith, M. A. (2001). Free. Radic.Biol. Med. 30, 447–450.PubMedGoogle Scholar
  31. Sheu, K. F., Calingasan, N. Y., Lindsay, J. G., and Gibson, G. E. (1998). J. Neurochem. 70, 1143–1150.PubMedGoogle Scholar
  32. Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. (1997). J. Neurosci. 17, 2653–2657.PubMedGoogle Scholar
  33. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. (2000). Biochim. Biophys. Acta 1502, 139–144.PubMedGoogle Scholar
  34. Yoo, A. S., Cheng, I., Chung, S., Grenfell, T. Z., Lee, H., Pack-Chung, E., Handler, M., Shen, J., Xia, W., Tesco, G., Saunders, A. J., Ding, K., Frosch, M. P., Tanzi, R. E., and Kim, T. W. (2000). Neuron 27, 561–572.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Gary E. Gibson
    • 1
  • Hsueh-Meei Huang
    • 1
  1. 1.Burke Medical Research InstituteWeill Medical College of Cornell UniversityWhite PlainsNew York 10605

Personalised recommendations