Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 4, pp 287–294 | Cite as

Deadly Conversations: Nuclear-Mitochondrial Cross-Talk

  • Valina L. Dawson
  • Ted M. Dawson


Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N-methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO−). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria.

Ischemia excitotoxicity neurodegeneration NMDA, nitric oxide peroxynitrite poly(ADP-ribose) polymerase PARP-1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnoult, D., Tatischeff, I., Estaquier, J., Girard, M., Sureau, F., Tissier, J. P., Grodet, A., Dellinger, M., Traincard, F., Kahn, A., Ameisen, J. C., and Petit, P. X. (2001). Mol. Biol. Cell 12, 3016–3030.PubMedGoogle Scholar
  2. Berger, N. A., and Berger, S. J. (1986). Basic Life Sci. 38, 357–363.PubMedGoogle Scholar
  3. Berger, N. A., Sims, J. L., Catino, D. M., and Berger, S. J. (1983). Princess Takamatsu Symp. 13, 219–226.PubMedGoogle Scholar
  4. Braun, J. S., Novak, R., Murray, P. J., Eischen, C. M., Susin, S. A., Kroemer, G., Halle, A., Weber, J. R., Tuomanen, E. I., and Cleveland, J. L. (2001). J Infect. Dis. 184, 1300–1309.PubMedGoogle Scholar
  5. Cande, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N., and Kroemer, G. (2002). Biochimie 84, 215–222.PubMedGoogle Scholar
  6. Chan, P. H. (2001). J. Cereb. Blood Flow Metab. 21,2–14.PubMedGoogle Scholar
  7. Chiarugi, A. (2002). Trends Pharmacol. Sci. 23, 122–129.PubMedGoogle Scholar
  8. Cregan, S. P., Fortin, A., MacLaurin, J. G., Callaghan, S. M., Cecconi, F., Yu, S. W., Dawson, T. M., Dawson, V. L., Park, D. S., Kroemer, G., and Slack, R. S. (2002). J. Cell Biol. 158, 507–517.PubMedGoogle Scholar
  9. Dawson, V. L., and Dawson, T. M. (1998). Prog. Brain. Res. 118, 215–229.PubMedGoogle Scholar
  10. de Murcia, G., and Menissier de Murcia, J. (1994). Trends Biochem. Sci. 19, 172–176.PubMedGoogle Scholar
  11. Dirnagl, U., ladecola, C., and Moskowitz, M. A. (1999). Trends Neurosci. 22, 391–397.PubMedGoogle Scholar
  12. Eliasson, M. J., Sampei, K., Mandir, A. S., Hurn, P. D., Traystman, R. J., Bao, J., Pieper, A., Wang, Z. Q., Dawson, T. M., Snyder, S. H., and Dawson, V. L. (1997). Nat. Med., 3, 1089–1095.PubMedGoogle Scholar
  13. Endres, M., Wang, Z. Q., Namura, S., Waeber, C., and Moskowitz, M. A. (1997). J. Cereb. Blood Flow Metab. 17, 1143–1151.PubMedGoogle Scholar
  14. Goto, S., Xue, R., Sugo, N., Sawada, M., Blizzard, K. K., Poitras, M. F., Johns, D. C., Dawson, T. M., Dawson, V. L., Crain, B. J., Traystman, R. J., Mori, S., and Hurn, P. D. (2002). Stroke 33, 1101–1106.PubMedGoogle Scholar
  15. Hageman, G. J., and Stierum, R. H. (2001). Mutat. Res. 475,45–56.PubMedGoogle Scholar
  16. Hisatomi, T., Sakamoto, T., Goto, Y., Yamanaka, I., Oshima, Y., Hata, Y., Ishibashi, T., Inomata, H., Susin, S. A., and Kroemer, G. (2002). Curr. Eye Res. 24, 161–172.PubMedGoogle Scholar
  17. Ischiropoulos, H., and Beckman, J. S. (2003). J. Clin. Invest. 111, 163–169.PubMedGoogle Scholar
  18. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., Sasaki, T., Elia, A. J., Cheng, H. Y., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y. Y., Mak, T. W., Zuniga-Pflucker, J. C., Kroemer, G., and Penninger, J. M. (2001). Nature 410, 549–554.PubMedGoogle Scholar
  19. Klein, J. A., Longo-Guess, C. M., Rossmann, M. P., Seburn, K. L., Hurd, R. E., Frankel, W. N., Bronson, R. T., and Ackerman, S. L. (2002). Nature, 419, 367–374.PubMedGoogle Scholar
  20. Kristian, T., and Siesjo, B. K. (1998). Stroke 29, 705–718.PubMedGoogle Scholar
  21. Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002). Science, 297, 1352–1354.PubMedGoogle Scholar
  22. Lindahl, T., Satoh, M. S., Poirier, G. G., and Klungland, A. (1995). Trends Biochem. Sci. 20, 405–411.PubMedGoogle Scholar
  23. Lipton, P. (1999). Physiol. Rev. 79, 1431–1568.PubMedGoogle Scholar
  24. Loeffler, M., Daugas, E., Susin, S. A., Zamzami, N., Metivier, D., Nieminen, A. L., Brothers, G., Penninger, J. M., and Kroemer, G. (2001). FASEB J. 15, 758–767.PubMedGoogle Scholar
  25. Mandir, A. S., Pizedborski, S., Jackson-Lewis, V., Wang, Z. Q., Simbulan-Rosenthal, C. M., Smulson, M. E., Hoffman, B. E., Guastella, D. B., Dawson, V. L., and Dawson, T. M. (1999). Proc. Natl. Acad. Sci. USA 96, 5774–5779.PubMedGoogle Scholar
  26. Mate, M. J., Ortiz-Lombardia, M., Boitel, B., Haouz, A., Tello, D., Susin, S. A., Penninger, J., Kroemer, G., and Alzari, P. M. (2002). Nat. Struct. Biol. 9, 442–446.PubMedGoogle Scholar
  27. Mayer, M. L., and Westbrook, G. L. (1987). Prog. Neurobiol. 28, 197–276.PubMedGoogle Scholar
  28. Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., Penninger, J. M., Peleato, M. L., Kroemer, G., and Susin, S. A. (2001). J. Biol. Chem., 276, 16391–16398.PubMedGoogle Scholar
  29. Robertson, J. D., Enoksson, M., Suomela, M., Zhivotovsky, B., and Orrenius, S. (2002). J. Biol. Chem., 277, 29808–29809.Google Scholar
  30. Samdani, A. F., Dawson, T. M., and Dawson, V. L. (1997). Stroke 28, 1283–1288.PubMedGoogle Scholar
  31. Susin, S. A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K. F., Irinopoulou, T., Prevost, M. C., Brothers, G., Mak, T. W., Penninger, J., Earnshaw, W. C., and Kroemer, G. (2000). J. Exp. Med. 192, 571–580.PubMedGoogle Scholar
  32. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999). Nature 397, 441–446.PubMedGoogle Scholar
  33. Szabo, C., and Dawson, V. L. (1998). Trends Pharmacol. Sci. 19, 287–298.PubMedGoogle Scholar
  34. Wang, X., Yang, C., Chai, J., Shi, Y., and Xue, D. (2002). Science, 298, 1587–1592.PubMedGoogle Scholar
  35. Ye, H., Cande, C., Stephanou, N. C., Jiang, S., Gurbuxani, S., Larochette, N., Daugas, E., Garrido, C., Kroemer, G., and Wu, H. (2002). Nat. Struct. Biol. 9, 680–684.PubMedGoogle Scholar
  36. Yu, S. W. Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002). Science 297, 259–263.PubMedGoogle Scholar
  37. Zamzami, N., El Hamel, C., Maisse, C., Brenner, C., Munoz-Pinedo, C., Belzacq, A. S., Costantini, P., Vieira, H., Loeffler, M., Molle, G., and Kroemer, G. (2000). Oncogene, 19, 6342–6350.PubMedGoogle Scholar
  38. Zhang, J., Dawson, V. L., Dawson, T. M., and Snyder, S. H. (1994). Science 263, 687–689.PubMedGoogle Scholar
  39. Zhang, X., Chen, J., Graham, S. H., Du, L., Kochanek, P. M., Draviam, R., Guo, F., Nathaniel, P. D., Szabo, C., Watkins, S. C., and Clark, R. S. (2002). J. Neurochem. 82, 181–191.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Valina L. Dawson
    • 1
    • 2
    • 3
  • Ted M. Dawson
    • 1
    • 2
    • 3
  1. 1.Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreMaryland
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland
  3. 3.Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMaryland

Personalised recommendations