Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 2, pp 179–186 | Cite as

Glutamate Interacts with VDAC and Modulates Opening of the Mitochondrial Permeability Transition Pore

  • Dan Gincel
  • Varda Shoshan-Barmatz


The amino acid glutamate, synthesized in the mitochondria, serves multiple functions, including acting as a neurotransmitter and participating in degradative and synthetic pathways. We have previously shown that glutamate modulates the channel activity of bilayer-reconstituted voltage-dependent anion channel (VDAC). In this study, we demonstrate that glutamate also modulates the opening of the mitochondrial permeability transition pore (PTP), of which VDAC is an essential component. Glutamate inhibited PTP opening, as monitored by transient Ca2+ accumulation, mitochondrial swelling and accompanying release of cytochrome c. Exposure to L-glutamate delayed the onset of PTP opening up to 3-times longer, with an IC50 of 0.5 mM. Inhibition of PTP opening by L-glutamate is highly specific, not being mimicked by D-glutamate, L-glutamine, L-aspartate, or L-asparagine. The interaction of L-glutamate with VDAC and its inhibition of VDAC's channel activity and PTP opening suggest that glutamate may also act as an intracellular messenger in the mitochondria-mediated apoptotic pathway.

Glutamate mitochondria permeability transition pore porin VDAC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlante, A., Calissano, P., Bobba, A., Giannattasio, S., Marra, E., and Passarella, S. (2001). FEBS Lett. 497, 1–5.Google Scholar
  2. Bers, D. M., Patton, C. W., and Nuccitelli, R. A. (1994). Methods Cell Biol. 40, 3–29.Google Scholar
  3. Beutner, G., Ruck, A., Riede, B., Brdiczka, D. (1998). Biochim. Biophys. Acta 1368, 7–18.Google Scholar
  4. Crompton, M., McGuinness, O., and Nazareth, W. (1992). Biochim. Biophys. Acta 1101, 214–217.Google Scholar
  5. Crompton, M., Virji, S., and Ward, J. M. (1998). Eur. J. Biochem. 258, 729–735.Google Scholar
  6. Dawson, R. M. C. et al. (1986). Data For Biochemical Research 3rd edn., Clarendon Press, Oxford, pp. 406–407.Google Scholar
  7. Fonnum, F. (1984). J. Neurochem. 42, 1–11.Google Scholar
  8. Gincel, D., Silberberg, S. D., and Shoshan-Barmatz, V. (2000). J. Bioenerg. Biomembr. 32, 571–583.Google Scholar
  9. Gincel, D., Vardi, N., and Shoshan-Barmatz, V. (2002). Invest. Ophthalmol. Vis. Sci. 43, 2097–2104.Google Scholar
  10. Gincel, D., Zaid, H., and Shoshan-Barmatz, V. (2001). Biochem. J. 358, 147–155.Google Scholar
  11. Halestrap, A. P., and Davidson, A. M. (1990). Biochem. J. 268, 153–160.Google Scholar
  12. Heath, P. R., and Shaw, P. J. (2002). Muscle Nerve 26, 438–458.Google Scholar
  13. Hodge, T., and Colombini, M. (1997). J. Membr. Biol. 157, 271–279.Google Scholar
  14. Hudson, R. C., and Daniel, R. M. (1993). Comp. Biochem. Physiol. B 106, 767–792.Google Scholar
  15. Hammarqvist, F., Luo, J. L., Cotgreave, I. A., Andersson, K., and Wernerman, J. (1997). Crit. Care Med. 25, 78–84.Google Scholar
  16. Johnson, D., and Lardy, H. (1967). Methods Enzymol. X, 94–96.Google Scholar
  17. Kroemer, G., and Reed, J. C. (2000). Nat. Med. 6, 513–519.Google Scholar
  18. Leverve, X. M., and Fontaine, E. (2001). IUBMB Life 52, 221–229.Google Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265–275.Google Scholar
  20. MacDonald, M. J., and Fahien, L. A. (2000). J. Biol. Chem. 275, 34025–34027.Google Scholar
  21. Maechler, P., and Wollheim, C. B. (1999). Nature 402, 685–689.Google Scholar
  22. Maechler, P., and Wollheim, C. B. (2000). J. Physiol. 529, 49–56.Google Scholar
  23. Mattson, M. P. (2000). Brain. Pathol. 10, 300–312.Google Scholar
  24. Nissim, I. (1999). Am. J. Physiol. 277, F493–F497.Google Scholar
  25. Pastorino, J. G., Shulga, N., and Hoek, J. B. (2002). J. Biol. Chem. 277, 7610–7618.Google Scholar
  26. Rostovtseva, T., and Colombini, M. (1997). Biophys. J. 72, 1954–1962.Google Scholar
  27. Rubi, B., Ishihara, H., Hegardt, F. G., Wollheim, C. B., and Maechler, P. (2001). J. Biol. Chem. 276, 36391–36396.Google Scholar
  28. Shi, Y., Kanaani, J., Menard-Rose, V., Ma, Y. H., Chang, P. Y., Hanahan, D., Tobin, A., Grodsky, G., and Baekkeskov, S. (2000). Am. J. Physiol. Endocrinol. Metab. 279, E684–E694.Google Scholar
  29. Shoshan-Barmatz, V., and Gincel, D. (2003). Cell Biochem. Biophys. 39, 279–292.Google Scholar
  30. Smaili, S. S., Hsu, Y. T., Youle, R. J., and Russell, J. T. (2000). J Bioenerg. Biomembr. 32, 35–46.Google Scholar
  31. Song, J., Midson, C., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). J. Biol. Chem. 273, 24406–24413.Google Scholar
  32. Standley, S., and Baudry, M. (2000). Cell. Mol. Life Sci. 57, 1508–1516.Google Scholar
  33. Tsujimoto, Y., and Shimizu, S. (2002). Biochimie 84, 187–193.Google Scholar
  34. Vander Heiden, M. G., Li, X. X., Gottlleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001). J. Biol. Chem. 276, 19414–19419.Google Scholar
  35. Wieckowski, M. R., and Wojtczak, L. (1997). Biochem. Biophys. Res. Commun. 232, 414–417.Google Scholar
  36. Woodfield, K., Ruck, A., Brdiczka, D., and Halestrap, A. P. (1998). Biochem. J. 336, 287–290.Google Scholar
  37. Zoratti, M., and Szabo, I. (1995). Biochim. Biophys. Acta 1241, 139–176.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Dan Gincel
    • 1
  • Varda Shoshan-Barmatz
    • 1
  1. 1.Department of Life SciencesBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations