Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 1, pp 65–75 | Cite as

Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I

  • Reiner Hedderich
Article

Abstract

[NiFe] hydrogenases are well-characterized enzymes that have a key function in the H2 metabolism of various microorganisms. In the recent years a subfamily of [NiFe] hydrogenases with unique properties has been identified. The members of this family form multisubunit membrane-bound enzyme complexes composed of at least four hydrophilic and two integral membrane proteins. These six conserved subunits, which built the core of these hydrogenases, have closely related counterparts in energy-conserving NADH:quinone oxidoreductases (complex I). However, the reaction catalyzed by these hydrogenases differs significantly from the reaction catalyzed by complex I. For some of these hydrogenases the physiological role is to catalyze the reduction of H+ with electrons derived from reduced ferredoxins or polyferredoxins. This exergonic reaction is coupled to energy conservation by means of electron-transport phosphorylation. Other members of this hydrogenase family mainly function to provide the cell with reduced ferredoxin with H2 as electron donor in a reaction driven by reverse electron transport. As complex I these hydrogenases function as ion pumps and have therefore been designated as energy-converting [NiFe] hydrogenases.

Hydrogen [NiFe] hydrogenase NADH:quinone oxidoreductase complex I methanogenic archaea carbon monoxide dehydrogenase iron–sulfur proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht, S. P., and Hedderich, R. (2000). FEBS Lett. 485, 1-6.Google Scholar
  2. Albracht, S. P. J. (1994). Biochim. Biophys. Acta 1188, 167-204.Google Scholar
  3. Andrews, S. C., Berks, B. C., McClay, J., Ambler, A., Quail, M. A., Golby, P., and Guest, J. R. (1997). Microbiology 143, 3633-3647.Google Scholar
  4. Bao, Q., Tian, Y., Li, W., Xu, Z., Xuan, Z., Hu, S., Dong, W., Yang, J., Chen, Y., Xue, Y., Xu, Y., Lai, X., Huang, L., Dong, X., Ma, Y., Ling, L., Tan, H., Chen, R., Wang, J., Yu, J., and Yang, H. (2002). Genome Res. 12, 689-700. fGoogle Scholar
  5. Bertram, P. A., and Thauer, R. K. (1994). Eur. J. Biochem. 226, 811-818.Google Scholar
  6. Blokesch, M., Paschos, A., Theodoratou, E., Bauer, A., Hube, M., Huth, S., and Bock, A. (2002). Biochem. Soc. Trans. 30, 674-680.Google Scholar
  7. Bock, A. K., Kunow, J., Glasemacher, J., and Schönheit, P. (1996). Eur. J. Biochem. 237, 35-44.Google Scholar
  8. Böhm, R., Sauter, M., and Böck, A. (1990). Mol. Microbiol. 4, 231-243.Google Scholar
  9. Bonam, D., and Ludden, P. W. (1987). J. Biol. Chem. 262, 2980-2987.Google Scholar
  10. Bott, M., Eikmanns, B., and Thauer, R. K. (1986). Eur. J. Biochem. 159, 393-398.Google Scholar
  11. Bott, M., and Thauer, R. K. (1989). Eur. J. Biochem. 179, 469-472.Google Scholar
  12. Brandt, U., Kerscher, S., Drose, S., Zwicker, K., and Zickermann, V. (2003). FEBS Lett. 545, 9-17.Google Scholar
  13. Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. M., and Venter, J. C. (1996). Science 273, 1058-1073.Google Scholar
  14. Darrouzet, E., Issartel, J. P., Lunardi, J., and Dupuis, A. (1998). FEBS Lett. 431, 34-38.Google Scholar
  15. Deppenmeier, U., Müller, V., and Gottschalk, G. (1996). Arch. Microbiol. 165, 149-163.Google Scholar
  16. Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R., and Meyer, O. (2001). Science 293, 1281-1285.Google Scholar
  17. Drennan, C. L., Heo, J., Sintchak, M. D., Schreiter, E., and Ludden, P. W. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 11973-11978.Google Scholar
  18. Ensign, S. A., and Ludden, P. W. (1991). J. Biol. Chem. 266, 18395-18403.Google Scholar
  19. Ferry, J. G. (1997). Biofactors 6, 25-35.Google Scholar
  20. Fox, J. D., He, Y., Shelver, D., Roberts, G. P., and Ludden, P. W. (1996b). J. Bacteriol. 178, 6200-6208.Google Scholar
  21. Fox, J. D., Kerby, R. L., Roberts, G. P., and Ludden, P. W. (1996a). J. Bacteriol. 178, 1515-1524.Google Scholar
  22. Friedrich, T., and Scheide, D. (2000). FEBS Lett. 479, 1-5.Google Scholar
  23. Friedrich, T., and Weiss, H. (1997). J. Theor. Biol. 187, 529-540.Google Scholar
  24. Garcin, E., Montet, Y., Volbeda, A., Hatchikian, C., Frey, M., and Fontecilla-Camps, J. C. (1998). Biochem. Soc. Trans. 26, 396-401.Google Scholar
  25. Hamamoto, T., Hashimoto, M., Hino, M., Kitada, M., Seto, Y., Kudo, T., and Horikoshi, K. (1994). Mol. Microbiol. 14, 939-946.Google Scholar
  26. Ingledew, W. J., and Ohnishi, T. (1980). Biochem. J. 186, 111-117.Google Scholar
  27. Kaesler, B., and Schönheit, P. (1989a). Eur. J. Biochem. 184, 223-232.Google Scholar
  28. Kaesler, B., and Schönheit, P. (1989b). Eur. J. Biochem. 186, 309-316.Google Scholar
  29. Kashani-Poor, N., Zwicker, K., Kerscher, S., and Brandt, U. (2001). J. Biol. Chem. 276, 24082-24087.Google Scholar
  30. Kerby, R. L., Hong, S. S., Ensign, S. A., Coppoc, L. J., Ludden, P. W., and Roberts, G. P. (1992). J. Bacteriol. 174, 5284-5294.Google Scholar
  31. Kerby, R. L., Ludden, P. W., and Roberts, G. P. (1995). J. Bacteriol. 177, 2241-2244.Google Scholar
  32. Kerby, R. L., Ludden, P. W., and Roberts, G. P. (1997). J. Bacteriol. 179, 2259-2266.Google Scholar
  33. Künkel, A., Vorholt, J. A., Thauer, R. K., and Hedderich, R. (1998). Eur. J. Biochem. 252, 467-476.Google Scholar
  34. Kurkin, S., Meuer, J., Koch, J., Hedderich, R., and Albracht, S. P. (2002). Eur. J. Biochem. 269, 6101-6111.Google Scholar
  35. Malki, S., Saimmaime, I., De Luca, G., Rousset, M., Dermoun, Z., and Belaich, J. P. (1995). J. Bacteriol. 177, 2628-2636.Google Scholar
  36. Meuer, J., Bartoschek, S., Koch, J., Künkel, A., and Hedderich, R. (1999). Eur. J. Biochem. 265, 325-335.Google Scholar
  37. Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R., and Metcalf, W. W. (2002). Proc. Natl. Acad. Sci. U.S.A. 99, 5632-5637.Google Scholar
  38. Nicolet, Y., Cavazza, C., and Fontecilla-Camps, J. C. (2002). J. Inorg. Biochem. 91, 1-8.Google Scholar
  39. Putnoky, P., Kereszt, A., Nakamura, T., Endre, G., Grosskopf, E., Kiss, P., and Kondorosi, A. (1998). Mol. Microbiol. 28, 1091-1101.Google Scholar
  40. Sapra, R., Bagramyan, K., and Adams, M. W. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 7545-7550.Google Scholar
  41. Sapra, R., Verhagen, M., and Adams, M. W. W. (2000). J. Bacteriol. 182, 3423-3428.Google Scholar
  42. Sauter, M., Böhm, R., and Böck, A. (1992). Mol. Microbiol. 6, 1523-1532.Google Scholar
  43. Schwarz, E., and Friedrich, B. (2003). In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community (Dworkin, M., ed.), Springer, New York. Retrieved from http://141.150.157.117:8080/prokPUB/index.htmGoogle Scholar
  44. Shelver, D., Kerby, R. L., He, Y., and Roberts, G. P. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 11216-11220.Google Scholar
  45. Silva, P. J., van den Ban, E. C., Wassink, H., Haaker, H., de Castro, B., Robb, F. T., and Hagen, W. R. (2000). Eur. J. Biochem. 267, 6541-6551.Google Scholar
  46. Skibinski, D. A., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C., and Andrews, S. C. (2002). J. Bacteriol. 184, 6642-6653.Google Scholar
  47. Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., Shakhova, V. V., Belova, G. I., Aravind, L., Natale, D. A., Rogozin, I. B., Tatusov, R. L., Wolf, Y. I., Stetter, K. O., Malykh, A. G., Koonin, E. V., and Kozyavkin, S. A. (2002). Proc. Natl. Acad. Sci. U.S.A. 99, 4644-4649.Google Scholar
  48. Soboh, B., Linder, D., and Hedderich, R. (2002). Eur. J. Biochem. 269, 5712-5721.Google Scholar
  49. Svetlichny, V. A., Sokolova, T. G., Gerhardt, M., Ringpfeil, M., Kostrikina, N. A., and Zavarzin, G. A. (1991). Syst. Appl. Microbiol. 14, 254-260.Google Scholar
  50. Svetlitchnyi, V., Peschel, C., Acker, G., and Meyer, O. (2001). J. Bacteriol. 183, 5134-5144.Google Scholar
  51. Tersteegen, A., and Hedderich, R. (1999). Eur. J. Biochem. 264, 930-943.Google Scholar
  52. Thauer, R. K. (1998). Microbiology 144, 2377-2406.Google Scholar
  53. Thauer, R. K., Klein, A. R., and Hartmann, G. C. (1996). Chem. Rev. 96, 3031-3042.Google Scholar
  54. Tran-Betcke, A., Warnecke, U., Bocker, C., Zaborosch, C., and Friedrich, B. (1990). J. Bacteriol. 172, 2920-2929.Google Scholar
  55. Uffen, R. L. (1976). Proc. Natl. Acad. Sci. U.S.A. 73, 3298-3302.Google Scholar
  56. Vignais, P. M., Billoud, B., and Meyer, J. (2001). FEMS Microbiol. Rev. 25, 455-501.Google Scholar
  57. Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1995). Nature 373, 580-587.Google Scholar
  58. Vorholt, J. A., Vaupel, M., and Thauer, R. K. (1996). Eur. J. Biochem. 236, 309-317.Google Scholar
  59. Winner, C., and Gottschalk, G. (1989). FEMS Microbiol. Lett. 65, 259-264.Google Scholar
  60. Xue, Y., Xu, Y., Liu, Y., Ma, Y., and Zhou, P. (2001). Int. J. Syst. Evol. Microbiol. 51, 1335-1341.Google Scholar
  61. Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. (1998). Biochim. Biophys. Acta 1364, 125-133.Google Scholar
  62. Yano, T., and Ohnishi, T. (2001). J. Bioenerg. Biomembr. 33, 213-222.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Reiner Hedderich
    • 1
  1. 1.Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-StraßeMarburgGermany

Personalised recommendations