Journal of Bioenergetics and Biomembranes

, Volume 36, Issue 1, pp 47–53 | Cite as

The Archaeal Signal Recognition Particle: Steps Toward Membrane Binding

  • Ralf G. Moll


Signal recognition particles and their receptors target ribosome nascent chain complexes of preproteins toward the protein translocation apparatus of the cell. The discovery of essential SRP components in the third urkingdom of the phylogenetic tree, the archaea (Woese, C. R., and Fox, G. E. (1977). Proc. Natl. Acad. Sci. U.S.A.74, 5088–5090) raises questions concerning the structure and composition of the archaeal signal recognition particle as well as the functions that route nascent prepolypeptide chains to the membrane. Investigations of the archaeal SRP pathway could therefore identify novel aspects of this process not previously reported or unique to archaea when compared with the respective eukaryal and bacterial systems.

SRP SRP receptor archaea SRP RNA SRP54 Ffh receptor FtsY protein targeting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Althoff, S., Selinger, D., and Wise, J. A. (1994). Nucleic Acids Res. 22, 1933-1947.Google Scholar
  2. Beck, K., Wu, L. F., Brunner, J., and Müller, M. (2000). EMBO J. 19, 134-143.Google Scholar
  3. Berks, B. C., Sargent, F., and Palmer, T. (2000). Mol. Microbiol. 35, 260-274.Google Scholar
  4. Bernstein, H. D., Poritz, M. A., Strub, K., Hoben, P. J., Brenner, S., and Walter, P. (1989). Nature 340, 482-486.Google Scholar
  5. Bhuiyan, S. H., Gowda, K., and Zwieb, C. (2000). Nucleic Acids Res. 28, 1365-1373.Google Scholar
  6. Connolly, T., and Gilmore, R. (1989). Cell 57, 599-610.Google Scholar
  7. Connolly, T., and Gilmore, R. (1993). J. Cell Biol. 123, 799-807.Google Scholar
  8. Connolly, T., Rapiejko, P. J., and Gilmore, R. (1991). Science 252, 1171-1173.Google Scholar
  9. Czarnota, G. J., Andrews, D. W., Farrow, N., and Ottensmeyer, F. P. (1994). J. Struct. Biol. 113, 35-46.Google Scholar
  10. Dale, H. C., Angevine, M., and Krebs, M. P. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 7847-7852.Google Scholar
  11. de Gier, J.-W., Mansournia, P., Valent, Q. A., Philipps, G. J., Luirink, J., and von Heijne, G. (1996). FEBS Lett. 399, 307-309.Google Scholar
  12. Dilks, K., Rose, R. W., Hartmann, E., and Pohlschröder, M. (2003). J. Bacteriol. 185, 1478-1483.Google Scholar
  13. Dobberstein, B. (1994). Nature 367, 599-600.Google Scholar
  14. Eichler, J. (2000). Eur. J. Biochem. 267, 3402-3412.Google Scholar
  15. Eichler, J., and Moll, R. (2001). Trends Microbiol. 9, 130-136.Google Scholar
  16. Gropp, R., Gropp, F., and Betlach, M. C. (1992). Proc. Natl. Acad. Sci. U.S.A. 89, 1204-1208.Google Scholar
  17. Hainzl, T., Huang, S., and Sauer-Eriksson, A. E. (2002). Nature 417, 767-771.Google Scholar
  18. Hershkowits, A. A., Bochkareva, E. S., and Bibi, E. (2000). Mol. Microbiol. 38, 927-939.Google Scholar
  19. Hershkovits, A. A., Shimoni, E., Minsky, A., Bibi, E. (2002). J. Cell Biol. 159, 403-410.Google Scholar
  20. Hirose, I., Sano, K., Shioda, I., Kumano, M., Nakamura, K., and Yamane, K. (2000). Microbiology 146, 65-75.Google Scholar
  21. Kalies, K.-U., Göhrlich, D., and Rapoport, T. (1994). J. Cell Biol. 126, 925-934.Google Scholar
  22. Keenan, R. J., Freymann, D. M., Stroud, R. M., and Walter, P. (2001). Annu. Rev. Biochem. 70, 755-775.Google Scholar
  23. Koch, H. G., Moser, M., and Müller, M. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 55-94.Google Scholar
  24. Leeuw, E. D., Poland, D., Mol, O., Sinning, I., ten Hagen-Jongman, C. M., Oudega, B., Luirink, J., et al. (1997). FEBS Lett. 416, 225-229.Google Scholar
  25. Leeuw, E. D., te Kaat, K., Moser, C., Menestrina, G., de Kruijff, B., Oudega, B., Luirink, J., and Sinning, I. (2000). EMBO J. 19, 531-541.Google Scholar
  26. Leroux, M. R. (2001). Adv. Appl. Microbiol. 50, 219-277.Google Scholar
  27. Luirink, J., and Dobberstein, B. (1994). Mol. Microbiol. 11, 9-13.Google Scholar
  28. Luirink, J., ten Hagen-Jongman, C. M., van der Weijden, C. C., Oudega, B., High, S., Dobberstein, B., and Kusters, R. (1994). EMBO J. 13, 2289-2296.Google Scholar
  29. Lütcke, H. (1995). Eur. J. Biochem. 228, 531-550.Google Scholar
  30. Macao, B., Luirink, J., and Samuelsson, T. (1997). Mol. Microbiol. 24, 523-534.Google Scholar
  31. Maeshima, H., Okuno, E., Aimi, T., Morinaga, T., and Itoh, T. (2001). FEBS Lett. 507, 336-340.Google Scholar
  32. Miller, J. D., Tajima, S., Lauffer, L., and Walter, P. (1995). J. Cell Biol. 128, 273-282.Google Scholar
  33. Millman, J. S., and Andrews, D. W. (1997). Cell 89, 673-676.Google Scholar
  34. Moll, R., and Schäfer, G. (1988). FEBS Lett. 232, 359-363.Google Scholar
  35. Moll, R., Schmidtke, S., Petersen, A., and Schäfer, G. (1997). Biochim. Biophys. Acta 1335, 218-230.Google Scholar
  36. Moll, R., Schmidtke, S., and Schäfer, G. (1995). Biochim. Biophys. Acta 1261, 315-318.Google Scholar
  37. Moll, R., Schmidtke, S., and Schäfer, G. (1996). FEMS Microbiol. Lett. 137, 51-56.Google Scholar
  38. Moll, R., Schmidtke, S., and Schäfer, G. (1999). Eur. J. Biochem. 259, 441-448.Google Scholar
  39. Moll, R. G. (2003). Biochem. J. 374, 247-254.Google Scholar
  40. Montoya, G., Svensson, C., Luirink, J., and Sinning, I. (1997). Nature 385, 365-368.Google Scholar
  41. Montoya, G., te Kaat, K., Moll, R., Schäfer, G., and Sinning, I. (2000). Structure 8, 515-525.Google Scholar
  42. Moser, C., Mol, O., Goody, S., and Sinning, I. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 11339-11344.Google Scholar
  43. Nakamura, K., Yahagi, S., Yamuzaki, T., and Yamane, K. (1999). J. Biol. Chem. 274, 13569-13576.Google Scholar
  44. Newitt, J. A., and Bernstein, H. D. (1997). Eur. J. Biochem. 245, 720-729.Google Scholar
  45. Pohlschröder, M., Prinz, W. A., Hartmann, E., and Pohlschröder, M. (1997). Cell 91, 563-566.Google Scholar
  46. Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E., and Kalies, K. U. (2000). EMBO J. 19, 1900-1906.Google Scholar
  47. Ramirez, C., and Matheson, A. T. (1991). Mol. Microbiol. 5, 1687-1693.Google Scholar
  48. Rapiejko, P. J., and Gilmore, R. (1997). Cell 89, 703-713.Google Scholar
  49. Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H., and Dobberstein, B. (1990). J. Cell Biol. 111, 1793-1802.Google Scholar
  50. Rose, R. W., Bruser, T., Kissinger, J. C., and Pohlschröder, M. (2002). Mol. Microbiol. 45, 943-950.Google Scholar
  51. Rose, R. W., and Pohlschröder, M. (2002). J. Bacteriol. 184, 3260-3267.Google Scholar
  52. Samuelsson, T. (1992). Nucleic Acids Res. 20, 5763-5770.Google Scholar
  53. Seluanov, A., and Bibi, E. (1997). J. Biol. Chem. 272, 2053-2055.Google Scholar
  54. Shepotinovskaya, I. V., and Freymann, D. M. (2002). Biochim. Biophys. Acta 1597, 107-114.Google Scholar
  55. Stephens, C. (1998). Curr. Biol. 8, 578-581.Google Scholar
  56. Stroud, R. M., and Walter, P. (1999). Curr. Opin. Struct. Biol. 9, 754-759.Google Scholar
  57. Tajima, S., Lauffer, L., Rath, V. L., and Walter, P. (1986). J. Cell Biol. 103, 1167-1178.Google Scholar
  58. Tozik, I., Huang, Q., Zwieb, C., and Eichler, E. (2002). Nucleic Acids Res. 30, 4166-4175.Google Scholar
  59. Ulbrandt, N. D., Newitt, J. A., and Bernstein, H. D. (1997). Cell 88, 187-196.Google Scholar
  60. Valent, Q. A., Scotti, P. A., High, S., de Gier, J.-W., von Heijne, G., Lentzen, G., Wintermeyer, W., Oudega, B., and Luirink, J. (1998). EMBO J. 17, 2504-2512.Google Scholar
  61. Walter, P., and Johnson, A. E. (1994). Annu. Rev. Cell Biol. 10, 87-119.Google Scholar
  62. Young, J. C., Ursini, J., Legate, K. R., Miler, J. D., Walter, P., and Andrews, D. W. (1995). J. Biol. Chem. 270, 15650-15657.Google Scholar
  63. Zheng, N., and Gierasch, L. M. (1997). Mol. Cell 1, 1-20.Google Scholar
  64. Zwieb, C., and Eichler, J. (2002). Archaea 1, 27-34.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Ralf G. Moll
    • 1
  1. 1.Department of BiochemistryUniversity of LübeckLübeckGermany;

Personalised recommendations