Journal of Biomolecular NMR

, Volume 30, Issue 2, pp 163–173 | Cite as

NMR structure of a complex between MDM2 and a small molecule inhibitor

  • David C. Fry
  • S. Donald Emerson
  • Stefan Palme
  • Binh T. Vu
  • Chao-Min Liu
  • Frank Podlaski


MDM2 is a regulator of cell growth processes that acts by binding to the tumor suppressor protein p53 and ultimately restraining its activity. While inactivation of p53 by mutation is commonly observed in human cancers, a substantial percentage of tumors express wild type p53. In many of these cases, MDM2 is overexpressed, and it is believed that suppression of MDM2 activity could yield therapeutic benefits. Therefore, we have been focusing on the p53-MDM2 interaction as the basis of a drug discovery program and have been able to develop a series of small molecule inhibitors. We herein report a high resolution NMR structure of a complex between the p53-binding domain of MDM2 and one of these inhibitors. The form of MDM2 utilized was an engineered hybrid between the human and Xenopus sequences, which provided a favorable combination of relevancy and stability. The inhibitor is found to bind in the same site as does a highly potent peptide fragment of p53. The inhibitor is able to successfully mimic the peptide by duplicating interactions in three subpockets normally made by amino acid sidechains, and by utilizing a scaffold that presents substituents with rigidity and spatial orientation comparable to that provided by the alpha helical backbone of the peptide. The structure also suggests opportunities for modifying the inhibitor to increase its potency.

MDM2 NMR spectroscopy protein-protein interaction protein structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkin, M.R., Randal, M., DeLano, W.L., Hyde, J., Luong, T.N., Oslob, J.D., Raphael, D.R., Taylor, L., Wang, J., McDowell, R.S., Wells, J.A. and Braisted, A.C. (2003) Proc. Natl. Acad. Sci. USA, 100, 1603–1608.Google Scholar
  2. Asada, S., Choi, Y. and Uesugi, M. (2003) J. Am. Chem. Soc., 125, 4992–4993.Google Scholar
  3. Bax, A., Clore, G.M. and Gronenborn, A.M. (1990) J. Magn. Reson., 88, 425–431.Google Scholar
  4. Berg, T. (2003) Agnew. Chem. Int. Ed., 42, 2462–2481.Google Scholar
  5. Berg, T., Cohen, S.B., Desharnais, J., Sonderegger, C., Maslyar, D.J., Goldberg, J., Boger, D.L. and Vogt, P.K. (2002) Proc. Natl. Acad. Sci. USA, 99, 3830–3835.Google Scholar
  6. Bohacek, R.S., Dalgarno, D.C., Hatada, M., Jacobsen, V.A., Lynch, B.A., Macek, K.J., Merry, T., Metcalf, C.A., Narula, S.S., Saw-yer, T.K., Shakespeare, W.C., Violette, S.M. and Weigele, M. (2001) J. Med. Chem., 44, 660–663.Google Scholar
  7. Braisted, A.C., Oslob, J.D., Delano, W.L., Hyde, J., McDowell, R.S., Waal, N., Yu, C., Arkin, M.R. and Raimundo, B.C. (2003) J. Am. Chem. Soc., 125, 3714–3715.Google Scholar
  8. Brinkmann, U., Mattes, R.E., Buckel, P. (1989) Gene 85,109–114.Google Scholar
  9. Bueso-Ramos, C.E., Yun, Y., deLeon, E., McCowm, P., Stass, S. and Albitar, M. (1993) Blood, 82, 2617–2623.Google Scholar
  10. Carter, P.H., Scherle, P.A., Muckelbauer, J.A., Voss, M.E., Liu, R.-Q., Thompson, L.A., Tebben, A.J., Solomon, K.A., Lo, Y.C., Li, Z., Strzemienski, P., Yang, G., Falahatpisheh, N., Xu, M., Wu, Z., Farrow, N.A., Ramnarayan, K., Wang, J., Rideout, D., Yalamoori, V., Domaille, P., Underwood, D.J., Trzaskos, J.M., Freidman, S.M., Newton, R.C. and Decicco, C.P. (2001) Proc. Natl. Acad. Sci. USA, 98, 11879–11884.Google Scholar
  11. Chen, J., Marechal, V. and Levine, A.J. (1993) Mol. Cell. Biol., 13, 4107–4114.Google Scholar
  12. Chen, L., Tilley, J.W., Trilles, R.V., Yun, W., Fry, D., Cook, C., Rowan, K., Schwinge, V. and Campbell, R. (2002) Bioorg. Med. Chem. Lett., 12, 137–141.Google Scholar
  13. Clackson, T. and Wells, J.A. (1995) Science, 267, 383–386.Google Scholar
  14. Clore, G.M. and Gronenborn, A.M. (1994) In Methods in Enzymo-logy, Vol. 239: Nuclear Magnetic Resonance, Part C, James, T.L. and Oppenheimer, N.J. (Eds.), Academic Press, San Diego, pp. 349–363.Google Scholar
  15. Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289–302.CrossRefGoogle Scholar
  16. Emerson, S.D., Madison, V.S., Palermo, R.E., Waugh, D.S., Scheffler, J.E., Tsao, K.-L., Kiefer, S.E., Liu, S.P. and Fry, D.C. (1995) Biochemistry, 34, 6911–6918.Google Scholar
  17. Emerson, S.D., Palermo, R., Liu, C.-M., Tilley, J.W., Chen, L., Danho, W., Madison, V.S., Greeley, D.N., Ju, G. and Fry, D.C. (2003) Protein Sci., 12, 811–822.Google Scholar
  18. Gadek, T.R., Burdick, D.J., McDowell, R.S., Stanley, M.S., Marsters, J.C., Paris, K.J., Oare, D.A., Reynolds, M.E., Lad-ner, C., Zioncheck, K.A., Lee, W.P., Gribling, P., Dennis, M.S., Skelton, N.J., Tumas, D.B., Clark, K.R., Keating, S.M., Beresini, M.H., Tilley, J.W., Presta, L.G. and Bodary, S.C. (2002) Science, 295, 1086–1089.Google Scholar
  19. Garcia-Echeverria, C., Chene, P., Blommers, M.J.J. and Furet, P. (2000) J. Med. Chem., 43, 3205–3208.Google Scholar
  20. Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997) Nature, 387, 296–299.Google Scholar
  21. Higuchi, R., Krummel, B. and Saiki, R.K. (1988) Nucl. Acids Res., 16, 7351–7367.Google Scholar
  22. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Gene, 77, 51–59.CrossRefPubMedGoogle Scholar
  23. Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. (1991) Science, 253, 49–53.PubMedGoogle Scholar
  24. Ikura, M. and Bax, A. (1992) J. Am. Chem. Soc., 114, 2433–2440.Google Scholar
  25. Jennerwein, M., Wappes, B., Gust, R., Schonenberger, H., Engel, J., Seeber, S. and Osieka, R. (1988) J. Can. Res. Clin. Oncol., 114, 347–358.Google Scholar
  26. Johnson, B.A. and Blevins, R.A. (1994) J. Biomol. NMR, 4, 603–614.Google Scholar
  27. Kallen, J., Weizenbach, K., Ramage, P., Geyl, D., Kriwacki, R., Legge, G., Cottens, S., Weitz-Schmidt, G. and Hommel, U. (1999) J. Mol. Biol., 292, 1–9.Google Scholar
  28. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  29. Ku, T.W., Ali, F.E., Barton, L.S., Bean, J.W., Bondinell, W.E., Burgess, J.L., Callahan, J.F., Calvo, R.R., Chen, L., Eggleston, D.S., Gleason, J.G., Huffman, W.F., Hwang, S.M., Jakas, D.R., Karash, C.B., Keenan, R.M., Kopple, K.D., Miller, W.H., New-lander, K.A., Nichols, A., Parker, M.F., Peishoff, C.E., Samanen, J.M., Uzinskas, I. and Venslavsky, J.W. (1993) J. Am. Chem. Soc., 115, 8861–8862.Google Scholar
  30. Kubbutat, M.H.G., Jones, S.N. and Vousden, K.H. (1997) Nature, 387, 299–303.Google Scholar
  31. Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J. and Pavletich, N.P. (1996) Science, 274, 948–953.Google Scholar
  32. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477–496.Google Scholar
  33. Last-Barney, K., Davidson, W., Cardozo, M., Frye, L.L., Grygon, C.A., Hopkins, J.L., Jeanfavre, D.D., Pav, S., Qian, C., Steven-son, J.M., Tong, L., Zindell, R. and Kelly, T.A. (2001) J. Am. Chem. Soc., 123, 5643–5650.Google Scholar
  34. Levine, A.J. (1997) Cell, 88, 323–331.CrossRefPubMedGoogle Scholar
  35. Liu, G., Huth, J.R., Olejniczak, E.T., Mendoza, R., DeVries, P., Leitza, S., Reilly, E.B., Okasinski, G.F., Fesik, S.W. and von Geldern, T.W. (2001) J. Med. Chem., 44, 1202–1210.Google Scholar
  36. Lunney, E.A., Para, K.S., Rubin, J.R., Humblet, C., Fergus, J.H., Marks, J.S. and Sawyer, T.K. (1997) J. Am. Chem. Soc., 119, 12471–12476.Google Scholar
  37. Marchetti, A. (1995) J. Pathol., 173, 31–38.Google Scholar
  38. McCoy, M.A. and Mueller, L. (1992) J. Am. Chem. Soc., 114, 2108–2112.Google Scholar
  39. McDowell, R.S., Blackburn, B.K., Gadek, T.R., McGee, L.R., Rawson, T., Reynolds, M.E., Robarge, K.D., Somers, T.C., Thor-sett, E.D., Tischler, M., Webb, R.R. and Venuti, M.C. (1994) J. Am. Chem. Soc., 116, 5077–5083.Google Scholar
  40. McMillan, K., Adler, M., Auld, D.S., Baldwin, J.J., Blasko, E., Browne, L.J., Chelsky, D., Davey, D., Dolle, R.E., Eagen, K.A., Erickson, S., Feldman, R.I., Glaser, C.B., Mallari, C., Morris-sey, M.M., Ohlmeyer, M.H.J., Pan, G., Parkinson, J.F., Phillips, G.B., Polokoff, M.A., Sigal, N.H., Vergona, R., Whitlow, M., Young, T.A. and Devlin, J.J. (2000) Proc. Natl. Acad. Sci. USA, 97, 1506–1511.Google Scholar
  41. Midgley, C.A. and Lane, D.P. (1997) Oncogene, 15, 1179–1189.Google Scholar
  42. Muhandiram, D.R. and Kay, L.E. (1994) J. Magn. Reson., 103, 203–216.Google Scholar
  43. Nagayama, K. (1986) J. Magn. Reson., 66, 240–249.Google Scholar
  44. Nilges, M. Clore, G.M. and Gronenborn, A.M. (1988a) FEBS Lett., 239, 129–136.Google Scholar
  45. Nilges, M., Gronenborn, A.M., Brunger, A.T. and Clore, G.M. (1988b) Protein Eng., 2, 27–38.Google Scholar
  46. Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D. and Vogel-stein, B. (1992) Nature, 358, 80–83.Google Scholar
  47. Orner, B.P., Ernst, J.T. and Hamilton, A.D. (2001) J. Am. Chem. Soc., 123, 5382–5383.Google Scholar
  48. Picksley, S.M., Vojtesek, B., Sparks, A. and Lane, D.P. (1994) Oncogene, 9, 2523–2529.Google Scholar
  49. Proudfoot, J. R., Betageri, R., Cardozo, M., Gilmore, T.A., Glynn, S., Hickey, E.R., Jakes, S., Kabcenell, A., Kirrane, T.M., Tibolla, A.K., Lukas, S., Patel, U.R., Sharma, R., Yazdanian, M. and Moss, N. (2001) J. Med. Chem., 44, 2421–2431.Google Scholar
  50. Reifenberger, G., Lu, L., Ichimura, K., Schmidt, E.E. and Collins, V.P. (1993) Cancer Res., 53, 2736–2739.Google Scholar
  51. Rutledge, S.E., Chin, J.W. and Schepartz, A. (2002) Curr. Opin. Chem. Biol., 6, 479–485.Google Scholar
  52. Shaka, A.J., Lee, C.J. and Pines, A. (1988) J. Magn. Reson., 77, 274–293.Google Scholar
  53. Shibagaki, I., Tanaka, H., Shimada, Y., Wagata, T., Ikenaga, M., Imamura, M. and Ishizaki, K. (1995) Clin. Cancer Res., 1, 769–773.Google Scholar
  54. Smith, A.B., Hirshmann, R., Pasternak, A., Yao, W., Sprengeler, P.A., Holloway, M.K., Kuo, L.C., Chen, Z., Darke, P.L. and Schleif, W.A. (1997) J. Med. Chem., 40, 2440–2444.Google Scholar
  55. Stoll, R., Renner, C., Hansen, S., Palme, S., Kelin, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., Schumacher, R., Hesse, F., Kaluza, B., Voelter, W., Engh, R. and Holak, T. (2001) Biochemistry, 40, 336–344.Google Scholar
  56. Stonehouse, J., Shaw, G.L., Keeler, J. and Laue, E.D. (1994) J. Magn. Reson., 107, 178–184.Google Scholar
  57. Tilley, J.W., Chen, L., Fry, D.C., Emerson, S.D., Powers, G.D., Biondi, D., Varnell, T., Trilles, R., Guthrie, R., Mennona, F., Kaplan, G., LeMahieu, R.A., Carson, M., Han, R.-J., Liu, C.-M., Palermo, R. and Ju, G. (1997) J. Am. Chem. Soc., 119, 7589–7590.Google Scholar
  58. Toogood, P.L. (2002) J. Med. Chem., 45, 1543–1558.Google Scholar
  59. Vogtle, F. and Goldschmitt, E. (1976) Chem. Ber., 109, 1–40.Google Scholar
  60. Zheleva, D.I., Lane, D.P. and Fischer, P.M. (2003) Mini Rev. Med. Chem., 3, 257–270.Google Scholar
  61. Zhu, Y.-F., Wang, X.-C., Connors, P., Wilcoxen, K., Gao, Y., Gross, R., Strack, N., Gross, T., McCarthy, J.R., Xie, Q., Ling, N. and Chen, C. (2003) Bioorg. Med. Chem. Lett., 13, 1931–1934.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • David C. Fry
    • 1
  • S. Donald Emerson
    • 1
    • 2
  • Stefan Palme
    • 3
  • Binh T. Vu
    • 1
  • Chao-Min Liu
    • 1
  • Frank Podlaski
    • 1
  1. 1.Roche Research CenterHoffmann-La Roche, IncNutley, NJ 07110U.S.A.
  2. 2.Current addressDiscovery Technologies, Pfizer, Inc.Ann Arbor, MI~48105U.S.A
  3. 3.Pharma ResearchRoche Diagnostics GmbHPenzbergGermany

Personalised recommendations